Front Cell Neurosci
September 2024
Introduction: Cytoarchitectonic studies have uncovered a correlation between higher levels of cortical hierarchy and reduced dendritic size. This hierarchical organization extends to the brain's timescales, revealing longer intrinsic timescales at higher hierarchical levels. However, estimating the contribution of single-neuron dendritic morphology to the hierarchy of timescales, which is typically characterized at a macroscopic level, remains challenging.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2024
The brain continually reorganizes its functional network to adapt to post-stroke functional impairments. Previous studies using static modularity analysis have presented global-level behavior patterns of this network reorganization. However, it is far from understood how the brain reconfigures its functional network dynamically following a stroke.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
The brain's functional network can be analyzed as a set of distributed functional modules. Previous studies using the static method suggested the modularity of the brain function network decreased due to stroke; however, how the modular network changes after stroke, particularly over time, is far from understood. This study collected resting-state functional MRI data from 15 stroke patients and 15 age-matched healthy controls.
View Article and Find Full Text PDFIntroduction: Functional magnetic resonance imaging (fMRI) has shown that aging disturbs healthy brain organization and functional connectivity. However, how this age-induced alteration impacts dynamic brain function interaction has not yet been fully investigated. Dynamic function network connectivity (DFNC) analysis can produce a brain representation based on the time-varying network connectivity changes, which can be further used to study the brain aging mechanism for people at different age stages.
View Article and Find Full Text PDFAbiotic stresses causing extensive yield loss in various crops globally. Over the past few decades, the application of silicon nanoparticles (nSi) has emerged as one of the abiotic stress mitigators. The initial responses of plants are shown by the biogenesis of reactive oxygen species (ROS) to sustain cellular/organellar integrity to ensure operation of metabolic functions by regulating physiological and biochemical pathways during stress conditions.
View Article and Find Full Text PDFDrought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity.
View Article and Find Full Text PDFSugarcane is a cash crop that plays an integral part in the sugar industry. The Sustainable Sugarcane Initiative (SSI) has been adopted globally, ensuring enough and aiming for more yield, helping increase disease-free sugarcane cultivation. Single-bud seeds could be the best approach for sugarcane cultivation.
View Article and Find Full Text PDFPhys Med Biol
December 2021
Lesions of COVID-19 can be clearly visualized using chest CT images, and hence provide valuable evidence for clinicians when making a diagnosis. However, due to the variety of COVID-19 lesions and the complexity of the manual delineation procedure, automatic analysis of lesions with unknown and diverse types from a CT image remains a challenging task. In this paper we propose a weakly-supervised framework for this task requiring only a series of normal and abnormal CT images without the need for annotations of the specific locations and types of lesions.
View Article and Find Full Text PDFBackground: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses.
Methods: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange.
In the dynamic era of climate change, agricultural farming systems are facing various unprecedented problems worldwide. Drought stress is one of the serious abiotic stresses that hinder the growth potential and crop productivity. Silicon (Si) can improve crop yield by enhancing the efficiency of inputs and reducing relevant losses.
View Article and Find Full Text PDFBackground: Sugarcane (Saccharum officinarum L.) is an economically important crop, mainly due to the production of sugar and biofuel (Azevedo RA, Carvalho RF, Cia MC, & Gratão PL, Trop Plant Biol 4:42-51, 2011). Grown mainly in tropical and subtropical countries, sugarcane is a highly polyploid plant with up to ten copies of each chromosome, which increases the difficulties of genome assembly and genetic, physiologic and biochemical analyses.
View Article and Find Full Text PDFBiomed Res Int
September 2016
. Water channel proteins, also called aquaporins, are integral membrane proteins from major intrinsic protein (MIP) family and involved in several pathways including not only water transport but also cell signaling, reproduction, and photosynthesis. The full cDNA and protein sequences of aquaporin in Fisch.
View Article and Find Full Text PDFBackground: Sugarcane (Saccharum officinarum L.) is an important sugar crop which belongs to the grass family and can be used for fuel ethanol production. The growing demands for sugar and biofuel is asking for breeding a sugarcane variety that can shed their leaves during the maturity time due to the increasing cost on sugarcane harvest.
View Article and Find Full Text PDF