Publications by authors named "Kaibin Chu"

Ammonia (NH) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH synthesis is imperative.

View Article and Find Full Text PDF

Electrocatalytic nitrate reduction to ammonia (eNRA) is a promising route toward environmental sustainability and clean energy. However, its efficiency is often limited by the slow conversion of intermediates due to spin-forbidden processes. Here, we introduce a novel A-site high-entropy strategy to develop a new perovskite oxide (LaPrNdBaSr)CoO (LPNBSC) for eNRA.

View Article and Find Full Text PDF

Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (FeO), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption.

View Article and Find Full Text PDF

SnSe with high theoretical capacity has been identified as an emerging anode candidate for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, the rate performance and cycling performance of this material in practical applications are still limited by unavoidable volume expansion and low conductivity. In this work, we designed and synthesized nitrogen-doped carbon-coated SnSe/C-N composites using 2-aminoterephthalic acid (CHNO) as a nitrogen-containing compound for modification by hydrothermal and vacuum calcination methods to achieve efficient utilization of active sites and optimization of the electronic structure.

View Article and Find Full Text PDF

The electrocatalytic nitrate (NO) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFeMO (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst.

View Article and Find Full Text PDF

The development of a 3D carbon assembly with a combination of extraordinary electrochemical and mechanical properties is desirable yet challenging. Herein, an ultralight and hyperelastic nanofiber-woven hybrid carbon assembly (NWHCA) is fabricated by nanofiber weaving of isotropic porous and mechanical brittle quasi-aerogels. Upon subsequent pyrolysis, metallogel-derived quasi-aerogel hybridization and nitrogen/phosphorus co-doping are integrated into the NWHCA.

View Article and Find Full Text PDF

Competition from hydrogen/oxygen evolution reactions and low solubility of N in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe C/Fe@PCNF-F away from water infiltration and endow a N molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust "quasi-solid-gas" state micro-domain around the catalyst surface.

View Article and Find Full Text PDF

Herein, the electronic structure of RhCu nanospheres was optimized and the size of the nanoparticles was reduced by an ultrasonic-assisted hydrothermal method. The performance of electrocatalytic urea synthesis was improved with an enhanced faradaic efficiency and urea yield rate of 34.82 ± 2.

View Article and Find Full Text PDF

Electroreduction of nitrate into ammonia (NRA) provides a sustainable route to convert the widespread nitrate pollutants into high-value-added products under ambient conditions, which unfortunately suffers from unsatisfactory selectivity due to the competitive hydrogen evolution reaction (HER). Previous strategies of modifying the metal sites of catalysts often met a dilemma for simultaneously promoting activity and selectivity toward NRA. Here, a general strategy is reported to enable an efficient and selective NRA process through coordination modulation of single-atom catalysts to tailor the local proton concentration at the catalyst surface.

View Article and Find Full Text PDF

The creation of ultrafine alloy nanoparticles (<5 nm) that can maintain surface activity and avoid aggregation for heterogeneous catalysis has received much attention and is extremely challenging. Here, ultrafine PtRh alloy nanoparticles imprisoned by the cavities of reduced chiral covalent imine cage (PtRh@RCC3) are prepared successfully by an organic molecular cage (OMC) confinement strategy, while the soluble RCC3 can act as a homogenizer to homogenize the heterogeneous PtRh alloy in solution. Moreover, the X-ray absorption near-edge structure (XANES) results show that the RCC3 can act as an electron-acceptor to withdraw electrons from Pt, leading to the formation of higher valence Pt atoms, which is beneficial to improving the catalytic activity for the reduction of 4-nitrophenol.

View Article and Find Full Text PDF

The d-band center of a catalyst can be applied for the prediction of its catalytic activity, but the application of d-band theory for the electrocatalytic nitrogen reduction reaction (eNRR) has rarely been studied in perovskite materials. In this work, a series of double-perovskite LaCoNiO (LCNO) nanorods (NRs) were synthesized as models, where the d-band centers can be modulated by changing the stoichiometric ratios between Co and Ni elements. Experimentally, the LCNO-III NRs ( = 0.

View Article and Find Full Text PDF

The construction of advanced micro-supercapacitors (MSCs) with both wide working-voltage and high energy density is promising but still challenging. In this work, a series of nitrogen-doped, cross-coupled micro-mesoporous carbon-metal networks (N-STC/M O ) is developed as robust additives to 3D printing inks for MSCs fabrication. Taking the N-STC/Fe O nanocomposite as an example, both experimental results and theoretical simulations reveal that the well-developed hierarchical networks with abundantly decorated ultrafine Fe O nanoparticles not only significantly facilitate the ion adsorption at its three-phase boundaries (Fe O , N-STC, and electrolyte), but also greatly favor ionic diffusion/transport with shortened pathways.

View Article and Find Full Text PDF

The main commercial infrared nonlinear optical (IR NLO) crystals, typically, AgGaS2, have some inherent disadvantages, for example, low laser damage threshold (LDT) or relatively poor stability, which limit their wide application. Here, we discover two new IR optical perovskites based on 1,4-diazabicyclo[2,2,2]octane, namely, (H2dabco)(PbCl3)2 (1) and (H2dabco)(H2PbBr6)·H2O (2). 1 and 2 crystallize in the noncentrosymmetric space groups P43212 and P63mc, respectively, displaying a broad transparent range with high transmission.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsino069mi81d847jeplar7cj702u6fq5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once