Objective: To investigate the safety and efficacy of a self-developed novel multi-electrode radiofrequency ablation catheter (Spark) for catheter-based renal denervation (RDN).
Methods: A total of 14 experimental miniature pigs were randomly divided into four groups (55°& 5-watt, 55°& 8-watt, 65°& 5-watt, and 65° & 8-watt groups). Spark was used for left and right renal artery radiofrequency ablation.
Zhonghua Xin Xue Guan Bing Za Zhi
June 2013
The individual signaling pathways underlying cardiac hypertrophy, which is induced by either α or β adrenergic receptor (AR), are different. Activation of different AR subtypes couples to different G proteins and induction of specific signaling pathways, which ultimately results in subtype-specific regulation of cardiac function. We present the first proteomics study identifying proteins that are related to AR subtype-specific hypertrophy in cardiomyocytes by comparing the two-dimensional electrophoresis patterns between neonatal rat cardiomyocytes treated by phenylepinephrin (PE) and by isoproterenol (ISO).
View Article and Find Full Text PDFAim: beta-adrenergic receptor (beta-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties. Connexin 43 (Cx43), the predominant gap-junction protein in the heart, has an indispensable role in modulating cardiac electric activities by affecting gap-junction function. The present study investigates the effects of short-term stimulation of beta-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function.
View Article and Find Full Text PDFRecently, there have been important advancements in our understanding of the signaling mechanisms of adrenoreceptors (AR) and signal transducers and activators of transcription 3 (STAT3). While their crucial roles in the pathological processes of the heart are well established, accumulating evidence suggests there is a complex pattern of crosstalk between these 2 signaling pathways. Moreover, the potential for crosstalk occurs at multiple levels in each signaling cascade and involves receptor transactivation, G proteins, small GTPases, cyclic adenosine 3',5'-monophosphate/protein kinase A, protein kinase C, scaffold/adaptor proteins, protein tyrosine kinases, and mitogen-activated protein kinases.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
October 2004
Objective: To evaluate the effect of shuxuetong (SXT) in preventing restenosis after intracoronary stenting.
Methods: Sixty-eight patients, accepted intracoronary stenting, were divided into two groups, the SXT group and the control group, both of them were treated with conventional treatment, and to the SXT group, SXT was given additionally. The condition of treated coronary artery restenosis in the two groups was compared by way of quantitative coronary angiography and a 6-month follow-up study was adopted.
Background: The activation of extracellular signal-regulated kinase1/2 (ERK1/2) has been shown to be important signaling pathway in the ischemic preconditioning (IPC) response. Recently, some studies suggest a key role for the mitochondrial ATP-sensitive potassium channel (mKATP) as both a trigger and an end effector of acute and delayed protection of IPC. Hence, this study was undertaken to elucidate the relationship between mKATP and ERK1/2 in the delayed protection mechanism of anoxic preconditioning (APC).
View Article and Find Full Text PDFPreconditioning (PC) exhibits earlier and delayed protection. But the mechanism of cellular signaling in delayed protection of PC remains unclear. We explored the roles of ERK(1/2) and p38 MAPK(alpha/beta) (p38(alpha/beta)) in delayed protection of anoxia preconditioning (APC).
View Article and Find Full Text PDF