Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated.
View Article and Find Full Text PDFCadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear.
View Article and Find Full Text PDFLow testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline.
View Article and Find Full Text PDFMaternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring.
View Article and Find Full Text PDFThere is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase.
View Article and Find Full Text PDFVitamin D (VD) has been suggested to have antitumor effects, however, research on the role of its transporter vitamin D-binding protein (VDBP, gene name as ) in tumors is limited. In this study, we demonstrated the mechanism underlying the inhibition of vasculogenic mimicry (VM) by VDBP in hepatocellular carcinoma (HCC) and proposed an anti-tumor strategy of combining anti-PD-1 therapy with VD. Three-dimensional cell culture models and mice with hepatocyte-specific deletion were utilized to study the correlation between VDBP expression and VM.
View Article and Find Full Text PDFIntroduction: Alzheimer's disease (AD) is a complex neurodegenerative disease with high heritability. Compared to autosomes, a higher proportion of disorder-associated genes on X chromosome are expressed in the brain. However, only a few studies focused on the identification of the susceptibility loci for AD on X chromosome.
View Article and Find Full Text PDFThe supplementation of multiple micronutrients throughout pregnancy can reduce the risk of adverse birth outcomes and various diseases in children. However, the long-term effect of maternal multiple micronutrient levels in the second trimester on the overall development of preschoolers remains unknown. Therefore, 1017 singleton mother-infant pairs and 6-year-old preschoolers were recruited based on the China-Wuxi Birth Cohort Study.
View Article and Find Full Text PDFCa-transcription coupling controls gene expression patterns that define vascular smooth muscle cell (VSMC) phenotype. Although not well understood this allows normally contractile VSMCs to become proliferative following vessel injury, a process essential for repair but which also contributes to vascular remodelling, atherogenesis and restenosis. Here we show that the Ca/HCO-sensitive enzyme, soluble adenylyl cyclase (sAC), links Ca influx in human coronary artery smooth muscle cells (hCASMCs) to 3',5'-cyclic adenosine monophosphate (cAMP) generation and phosphorylation of the transcription factor Ca/cAMP response element binding protein (CREB).
View Article and Find Full Text PDFCellular Electron CryoTomography (CECT) is a 3D imaging technique that captures information about the structure and spatial organization of macromolecular complexes within single cells, in near-native state and at sub-molecular resolution. Although template matching is often used to locate macromolecules in a CECT image, it is insufficient as it only measures the relative structural similarity. Therefore, it is preferable to assess the statistical credibility of the decision through hypothesis testing, requiring many templates derived from a diverse population of macromolecular structures.
View Article and Find Full Text PDFCellular Electron Cryo-Tomography (CECT) is a powerful 3D imaging tool for studying the native structure and organization of macromolecules inside single cells. For systematic recognition and recovery of macromolecular structures captured by CECT, methods for several important tasks such as subtomogram classification and semantic segmentation have been developed. However, the recognition and recovery of macromolecular structures are still very difficult due to high molecular structural diversity, crowding molecular environment, and the imaging limitations of CECT.
View Article and Find Full Text PDFObjective: To observe the expression of Toll-like receptor 8 (TLR8) in human cervical cancer cell-line HeLa cells, and the effects of TLR8 agonist CL075 on the survival and proliferation of HeLa cells.
Methods: PCR and RT-PCR were used to detect the expression of TLR8 in 13 cancer cell lines, and the expression of COX-2, Bcl-2, VEGF mRNA in the HeLa cells stimulated by TLR8 agonist CL075 were also measured by RT-PCR. Immunofluorescence technique was used to determine the exact location of TLR8 in the cells.