Publications by authors named "Kai-li Zhu"

Background: As a threat to human health and public health, cadmium (Cd) pollution has received widespread social concern. Our previously constructed CadR-based bacterial whole cell biosensor (WCB) epCadR5 showed high sensitivity and specificity in cadmium detection. However, the application of the sensor is still hindered by the need for laboratory equipment to read the fluorescence signal output.

View Article and Find Full Text PDF

Background: Accumulating evidence has shown that circular RNAs (circRNAs) are involved in gastric cancer (GC) tumorigenesis. However, specific functional circRNAs in GC remain to be discovered, and their underlying mechanisms remain to be elucidated.

Methods: CircRNAs that were differentially expressed between GC tissues and controls were analyzed using a circRNA microarray dataset.

View Article and Find Full Text PDF

Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME.

View Article and Find Full Text PDF

Investigating the role of ubiquitin-specific peptidase 10 (USP10) in triple-negative breast cancer (TNBC). Analyzed USP10 expression levels in tumors using public databases. Detected USP10 mRNA and protein levels in cell lines.

View Article and Find Full Text PDF

In the present study, a practical method to prepare piperazinyl amides of 18β-glycyrrhetinic acid was developed. Two main procedures for the construction of important intermediate are discussed. One procedure involves the amidation of 1-Boc-piperazine with 3-acetyl-18β-glycyrrhetinic acid, prepared by the reaction of 18β-glycyrrhetinic acid with acetic anhydride without any solvent at 130 °C.

View Article and Find Full Text PDF

The mechanism of cyclohexane dehydrogenation catalyzed by the cationic dimer Ni2 (+) has been investigated at the B3LYP level of density functional theory. The first dehydrogenation occurs readily (it is exothermic by 30 kcal/mol), whereas the second and third dehydrogenations show weaker exothermicity than the first (23 and 21 kcal/mol, respectively). These three hydrogenations corresponding to the total dehydrogenation of one face of cyclohexane mainly proceed in the doublet state due to the presence of significant minimum-energy crossing points (MECPs).

View Article and Find Full Text PDF