Publications by authors named "Kai-Uwe Ulrich"

The effects of diffusive transport limitations on the dissolution of UO(2) were investigated using an artificial groundwater prepared to simulate the conditions at the Old Rifle aquifer site in Colorado, USA. Controlled batch, continuously-stirred tank (CSTR), and plug flow reactors were used to study UO(2) dissolution in the absence and presence of diffusive limitations exerted by permeable sample cells. The net rate of uranium release following oxidative UO(2) dissolution obtained from diffusion-limited batch experiments was ten times lower than that obtained for UO(2) dissolution with no permeable sample cells.

View Article and Find Full Text PDF

The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids.

View Article and Find Full Text PDF

Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO₂), a desirable U(VI) bioreduction product, in the Old Rifle, CO, aquifer under different variable oxygen conditions.

View Article and Find Full Text PDF
Article Synopsis
  • * Incorporating up to 4.4 weight percent of Mn(II) into biogenic uraninite results in smaller particle size and changes in the structure of the uraninite.
  • * The presence of Mn(II) significantly reduces the solubility and dissolution rate of uraninite compared to unreacted forms, suggesting that other groundwater solutes might also enhance its stability.
View Article and Find Full Text PDF

Previous spectroscopic research suggested that uranium(VI) adsorption to iron oxides is dominated by ternary uranyl-carbonato surface complexes across an unexpectedly wide pH range. Formation of such complexes would have a significant impact on the sorption behavior and mobility of uranium in aqueous environments. We therefore reinvestigated the identity and structural coordination of uranyl sorption complexes using a combination of U LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and iterative transformation factor analysis, which enhances the resolution in comparison to conventional EXAFS analysis.

View Article and Find Full Text PDF

U(VI) adsorption on aerosol-synthesized hematite particles ranging in size from 12 to 125 nm was studied to explore nanoscale size effects on uranium adsorption. Adsorption on 70 nm aqueous-synthesized particles was also investigated to examine the effect of the synthesis method on reactivity. Equilibrium adsorption was measured over pH 3-11 at two U(VI) loadings.

View Article and Find Full Text PDF

Manganese oxides are widespread in the environment and their surface reactivity has the potential to modifythe geochemical behavior of uranium. We have investigated the effect of different concentrations of U and Mn on the coupled biogeochemical oxidation-reduction reactions of U and Mn. Experiments conducted in the presence of Mn(II)-oxidizing spores from Bacillus sp.

View Article and Find Full Text PDF

The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles' surface free energy, structural defects, and compositional variability in analogy to abiotic UO(2+x) (0 < or = x < or = 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic nano-UO2 and synthetic bulk UO2.

View Article and Find Full Text PDF

Release of reactive (phosphate-like) phosphorus (P) from freshwater sediments represents a significant internal P source for many lakes. Hypolimnetic P release occurs under reducing conditions that cause reductive dissolution of ferric hydroxide [Fe(OH)3]. This hypolimnetic P release may be naturally low or artificially reduced by sediment with naturally high or artificially elevated concentrations of aluminum hydroxide [Al(OH)3].

View Article and Find Full Text PDF

This study evaluates chemical trends of seven acidified reservoirs and 22 tributaries in the Erzgebirge from 1993 to 2003. About 85% of these waters showed significantly (p < 0.05) declining concentrations of protons (-69%), nitrate (-41%), sulfate (-27%), and reactive aluminum (-50% on average).

View Article and Find Full Text PDF

About 240,000 square kilometers of Earth's surface is disrupted by mining, which creates watersheds that are polluted by acidity, aluminum, and heavy metals. Mixing of acidic effluent from old mines and acidic soils into waters with a higher pH causes precipitation of amorphous aluminum oxyhydroxide flocs that move in streams as suspended solids and transport adsorbed contaminants. On the basis of samples from nine streams, we show that these flocs probably form from aggregation of the epsilon -Keggin polyoxocation AlO4Al12(OH)24(H2O)12(7+)(aq) (Al13), because all of the flocs contain distinct Al(O)4 centers similar to that of the Al13 nanocluster.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: