Metallo-β-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic β-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates.
View Article and Find Full Text PDFThe emergence of metallo-β-lactamases (MBLs) confers resistance to nearly all the β-lactam antibiotics, including carbapenems. Currently, there is a lack of clinically useful MBL inhibitors, making it crucial to discover new inhibitor chemotypes that can potently target multiple clinically relevant MBLs. Herein we report a strategy that utilizes a metal binding pharmacophore (MBP) click approach to identify new broad-spectrum MBL inhibitors.
View Article and Find Full Text PDFSIRT5 has been implicated in various physiological processes and human diseases, including cancer. Development of new highly potent, selective SIRT5 inhibitors is still needed to investigate disease-related mechanisms and therapeutic potentials. We here report new ε-N-thioglutaryllysine derivatives, which were designed according to SIRT5-catalysed deacylation reactions.
View Article and Find Full Text PDFProduction of metallo-β-lactamases (MBLs) in bacterial pathogens is an important cause of resistance to the 'last-resort' carbapenem antibiotics. Development of effective MBL inhibitors to reverse carbapenem resistance in Gram-negative bacteria is still needed. We herein report X-ray structure-guided optimization of 1H-imidazole-2-carboxylic acid (ICA) derivatives by considering how to engage with the active-site flexible loops and improve penetration into Gram-negative bacteria.
View Article and Find Full Text PDFChiral 3-substituted benzoxaboroles were designed as carbapenemase inhibitors and efficiently synthesised via asymmetric Morita-Baylis-Hillman reaction. Some of the benzoxaboroles were potent inhibitors of clinically relevant carbapenemases and restored the activity of meropenem in bacteria harbouring these enzymes. Crystallographic analyses validate the proposed mechanism of binding to carbapenemases, i.
View Article and Find Full Text PDFHuman indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan 2,3-dioxygenase (hTDO) have been closely linked to the pathogenesis of Parkinson's disease (PD); nevertheless, development of dual hIDO1 and hTDO inhibitors to evaluate their potential efficacy against PD is still lacking. Here, we report biochemical, biophysical, and computational analyses revealing that 1-indazole-4-amines inhibit both hIDO1 and hTDO by a mechanism involving direct coordination with the heme ferrous and ferric states. Crystal structure-guided optimization led to , which manifested IC values of 0.
View Article and Find Full Text PDF