Publications by authors named "Kai-Qin Xu"

Anaerobic ammonia oxidation (anammox), an energy-efficient technology for treating ammonium-rich wastewater, faces the challenge of antibiotic stress in sewage. This paper systematically evaluated the impact of antibiotics on anammox by considering both inhibitory effects and recovery duration. This review focused on cellular responses, including extracellular polymeric substances (EPS), quorum sensing (QS), and enzymes.

View Article and Find Full Text PDF

Pyrite-driven autotrophic denitrification (PAD) has been recognized as a promising treatment technology for nitrate removal. Although the occurrence of PAD has been found in recent years, there is a knowledge gap about effects of crystal plane of pyrite on the performance and mechanism of PAD system. Here, this study investigated the effects of crystal planes ({100}, {111} and {210}) of single-crystal pyrite on denitrification performance, electron transfer, and microbial mechanism in PAD system.

View Article and Find Full Text PDF

Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

A novel AgPO/ZnWO-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.

View Article and Find Full Text PDF

Persistent concerns regarding environmental hazards arise from the difficulty in disposing of radioactive plant-based wastes originating from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) in Japan in 2011. In this study, three anaerobic digestion (AD) strategies were proposed: Sole anaerobic wet fermentation, and wet fermentations with either alkaline-heat or ultrasonic pre-treatment, which were employed for long-term anaerobic treatment of a genuine radioactive grass stemming from the FNPP accident. The objectives of this work are to investigate the effects of pre-treatments on biomass conversion efficiency and to gain insight into the leaching behavior of radiocaesium (Rad-Cs) within AD processes.

View Article and Find Full Text PDF

In this study, humic acid (HA) enhanced 17β-estradiol (17β-E2) degradation by Er-CdS/MoS (ECMS) was investigated under ultrasonic and light conditions. The degradation reaction rate of 17β-E2 was increased from (14.414 ± 0.

View Article and Find Full Text PDF

It has been verified that, as an emerging contaminant, microplastics are capable of adsorbing certain traditional contaminants like the heavy metal Cd. However, the majority of previous studies only focused on certain types of virgin microplastics, especially for PE and PS. In addition, this adsorption process might be affected by microplastics inevitably undergoing aging and consequent changes in the natural environment.

View Article and Find Full Text PDF

Tar generated as a by-product during biomass gasification contains a high concentration of refractory organic matters. In this study, a hybrid upflow anaerobic sludge-biochar bed reactor was established for tar treatment, and the methane yield was 120-154 NmL-CH/g-COD, 20-30% higher than the control reactor. COD removal and methane production significantly decreased in both reactors when the influent tar concentration was doubled from 4954 mg-COD/L to 9964 mg-COD/L.

View Article and Find Full Text PDF

In this pilot-scale study, an innovative mainstream treatment process that couples the anaerobic membrane reactor (AnMBR) with a one-stage PN/A system was proposed for advancing the concept of carbon neutrality in the municipal wastewater treatment plant. This work demonstrates the start-up procedure of a pilot-scale one-stage PN/A system for mainstream treatment. The 255-day start-up of the one-stage PN/A system involved the cultivation of ammonium-oxidizing bacteria (AOB) from the activated sludge, suppression of nitrite-oxidizing bacteria (NOB), investigation of in-situ growth kinetics of anammox bacteria (AnAOB), and the 50-day operation of the pilot-scale AnMBR-PN/A process for natural mainstream treatment.

View Article and Find Full Text PDF

Anaerobic digestion of decabromodiphenyl ether was carried out and compared in two continuously stirred anaerobic bioreactors for 210 days under thermophilic and mesophilic conditions. Results show that the degradation of decabromodiphenyl ether followed the first-order reaction kinetics, which exhibited a higher removal rate in the thermophilic reactor when compared to the mesophilic one, reaching its maximum of 1.1 μg·day.

View Article and Find Full Text PDF

Poor processing stability has been cited as the fatal shortcoming of the up-flow anaerobic sludge blanket (UASB) reactor treating starch wastewater (SW). In this study, the SW treatment performance in a one-stage UASB reactor and a pre-acidification equipped UASB process were evaluated together with the microbial dynamics. The results revealed that the pre-acidification provided improvements in terms of the substrate utilization diversity and the stability of the microbial community structure on the UASB reactor.

View Article and Find Full Text PDF

Cultivation of biomass crops for energy production is a promising land-use for farmland abandoned owing to radionuclide fallout. However, radionuclides in soil are easily taken up in the crop. To understand phase partitioning of radiocesium Cs (RCs) during anaerobic digestion (AD) of crops, semi-continuous AD experiments were carried out using two types of RCs-contaminated crops.

View Article and Find Full Text PDF

This study investigated the effects of the addition of micro- (Fe, Co, Ni, and Mo) and macro-(Sulfur) nutrients on mono-digestion of sorghum under mesophilic conditions. A continuous stirred-tank reactor was operated for more than 420 days under seven different experimental conditions. The experimental results showed poor performance for methane production and process stability without nutrient supplementation.

View Article and Find Full Text PDF

Biochar is a carbon rich product made from the biomass pyrolysis process. Recently, biochar addition in anaerobic digestion processes has attracted attention for its possible functions to act as pH stabilizing agent, microbial carrier, and interspecies electron transfer. In this study, the effects of rice husk biochar addition in sorghum anaerobic digestion were investigated in batch tests.

View Article and Find Full Text PDF

This research investigated the performance of an aerobic granular reactor treating biogas slurry from pig farm. Results indicated that the granular structure of aerobic sludge was not affected by the high pollution concentrationsin the biogas slurry. Although a low removal rate of phosphate was found in this study (about 16%±2%), organic matter and ammonia nitrogen showed stable removal and transformation in the granular system, and the effluent concentrations of those components were (267±81)mg·L and(62±12)mg·L, respectively.

View Article and Find Full Text PDF

Oily organic waste is a promising feedstock for anaerobic co-digestion. Free long-chain fatty acids (LCFAs) produced from lipids can inhibit methanogenic consortia, so optimal control of LCFA concentration is the key to successful operation of co-digestion. Most LCFAs are present in the solid phase, making them difficult to be detected and monitored.

View Article and Find Full Text PDF

In this study, an integrated system of siphon-driven self-agitated anaerobic reactor (SDSAR) and anaerobic fixed bed reactor (AFBR) was conducted for the treatment of wastewater from food waste disposer (FWD), and the effect of influent total solids (TS) concentration on the process performance was evaluated. When the influent TS concentration increased from 7.04 to 15.

View Article and Find Full Text PDF

In this study, a 200-day deca-brominated diphenyl ether (deca-BDE) degradation activity experiment was carried out, using consumer-use curtain material as the substrate. During the degradation process, polybrominated diphenyl ether (PBDE) products with fewer bromine atoms were gradually generated by the debromination of deca-BDE. The influences of temperature, initial substrate dosing mass, and pH were also investigated.

View Article and Find Full Text PDF

It is becoming increasingly urgent to investigate the partition coefficients (expressed as log K values) of polybrominated diphenyl ethers (PBDEs) in dissolved organic carbon (DOC) present in wastewater. In the current study, after 72 h of equilibration, the concentrations of four common PBDEs were measured in the presence of four DOC solutions from two laboratories and two full-scale anaerobic digestion plants. Sixteen log Ks were determined by calculation and unit conversion.

View Article and Find Full Text PDF

This study investigated the effect of light intensity on three various microalga consortia collected from natural ecological water bodies (named A, B and C) towards their fatty acid profiling and fractions, carbohydrate and protein production at different light intensities of 100, 200 and 300 μmol m s. The results indicating that increasing light intensity positively correlated with the lipid production than carbohydrate and protein. Irrespective to the solids (Total and Volatile Solid) content, lipids and carbohydrate has varied significantly.

View Article and Find Full Text PDF

To investigate the influence of lipid concentration (of total solids, w/w) on anaerobic treatment of food waste under thermophilic condition, a siphon-driven self-agitated anaerobic reactor was operated for 220 days. The average lipid concentration was changed from 12.8% to 59.

View Article and Find Full Text PDF

This study investigated early stages of biofilm formation from sieved fine particles of anaerobic granules in the presence of various cationic substances using a quartz crystal sensor to improve biofilm formation in the anaerobic treatment of saline wastewater. The biomass attached on the sensor was greatly increased with Ca within the low range (8-16 mM), which was not affected by 50 mM of Na. However, the positive effect of 16 mM of Ca was strongly reduced in the co-presence of Ca and Na when Na concentrations were in the range from 25 to 150 mM because Ca may compete with Na for the limited binding sites in biofilm.

View Article and Find Full Text PDF

The effects of organic loading rate (OLR) and operating temperature on the performance of siphon-driven self-agitated anaerobic reactor (SDSAR) in an on-site food waste (FW) treatment system were investigated. Two reactors were operated in parallel for comparison between mesophilic condition (35 ± 1 °C) and thermophilic condition (55 ± 1 °C). With HRT above 15 d and OLR below 4.

View Article and Find Full Text PDF

The objective of this study was to assess the feasibility of co-digesting food waste (FW) and de-oiled grease trap waste (GTW) to improve the biogas production. A lab-scale mesophilic digester (MD), a temperature-phased anaerobic digester (TPAD) and a TPAD with recycling (TPAD-R) were synchronously operated under mono-digestion (FW) and co-digestion (FW+de-oiled GTW). Co-digestion increased the biogas yield by 19% in the MD and TPAD-R, with a biogas yield of 0.

View Article and Find Full Text PDF

A distributed catchment hydrologic model (Hydrological Simulation Program--FORTRAN; HSPF) with improved sediment production processes was used to evaluate the effect of restoration of cultivated land to forest on the reduction of runoff and sediment load in the Jialingjiang basin, which forms part of the Yangtze River basin, China. The simulation results showed that restoration to forest reduced sediment production even in the case of minimum restoration at a threshold catchment slope of 25°, as advocated in the "Gain for Green Program " planned by the Chinese government, even though reduction of the peak flow rate in the river channel was small. The increase in forest area resulting from lowering of the threshold catchment slope reduced sediment production further.

View Article and Find Full Text PDF