Publications by authors named "Kai-Peng Jing"

Macroautophagy/autophagy dysregulation has been noted in diabetic nephropathy; however, the regulatory mechanisms controlling this process remain unclear. In this study, we showed that SMAD3 (SMAD family member 3), the key effector of TGFB (transforming growth factor beta)-SMAD signaling, induces lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis. The pharmacological inhibition or genetic deletion of SMAD3 restored lysosome biogenesis activity by alleviating the suppression of , thereby protecting lysosomes from depletion and improving autophagic flux in renal tubular epithelial cells in diabetic nephropathy.

View Article and Find Full Text PDF

BACKGROUND Cell cycle arrest and autophagy have been demonstrated to be involved in various transforming growth factor (TGF)-ß-mediated phenotype alterations of tubular epithelial cells (TECs) and tubulointerstitial fibrosis. But the relationship between cell cycle arrest and the autophagy induced by TGF-ß has not been explored well. MATERIAL AND METHODS The effects of autophagy inhibition on TGF-ß-induced cell cycle arrest in TECs were explored in vitro.

View Article and Find Full Text PDF

Sebocyte differentiation is a continuous process, but its potential molecular mechanism remains unclear. We aimed to establish a novel sebocyte differentiation model using human primary sebocytes and to identify the expression profiles of differentiation-associated proteins. Primary human sebocytes were cultured on Sebomed medium supplemented with 2% serum for 7 days.

View Article and Find Full Text PDF

Background/aims: Massive proteinuria, a significant sign of nephrotic syndrome (NS), has the potential to injure tubular epithelial cells (TECs). Furosemide is widely used for the treatment of edema, a common manifestation of NS. However, whether furosemide treatment affects massive proteinuria-induced TEC injury in patients with NS is unknown.

View Article and Find Full Text PDF