Background: This study aims to review and describe the national post-market cases of oral anticoagulants (OACs)-induced intracranial hemorrhage (ICH) to enhance patient safety.
Research Design And Methods: All ICH cases of OACs as primary suspected medicines were extracted from the FAERS. The disproportionality analysis was utilized for signal detection.
Expert Rev Clin Pharmacol
January 2024
Objective: This study aimed to explore a comprehensive empirical investigation and assess SCARs related to valaciclovir or acyclovir based on FAERS database from FDA, thus providing a theoretical foundation for the rational application of drugs in clinic.
Methods: SCARs reports relevant to valaciclovir or acyclovir were searched in FAERS database from the 2004 Q1 to 2023 Q2. These data were further mined by a proportional analysis and Bayesian approach to detect signals of SCARs caused by two drugs.
A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin.
View Article and Find Full Text PDFIntratumoral drug delivery (IT) is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. However, for most chemotherapies, poor tumor penetration and short retention at the administration site limit their anti-tumor effects. In this work, we describe permeable nanoparticles (NPs) prepared with a novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL).
View Article and Find Full Text PDFMultifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX.
View Article and Find Full Text PDFPurpose: Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats.
Methods: The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM).
Malignant gliomas especially glioblastoma (GBM) are poorly responsive to the current treatments. Cilengitide (CGT) is a cyclic pentapeptide that demonstrated efficacy for GBM treatment by targeting the integrins avβ3 and avβ5 over-expressed on GBM cells. However, clinical translation of this therapy has been limited by issues including fast blood clearance, high kidney and liver uptake, poor blood-brain barrier (BBB) penetration, low tumor specificity and rapid washout from tumors.
View Article and Find Full Text PDFBasic fibroblast growth factor (bFGF) may protect stroke patients from cerebral ischemia-reperfusion (I/R) injury. In this study, we report the intranasal use of novel nanoliposomes for the brain delivery of bFGF in a rat model of cerebral I/R. Compared with free bFGF, nanoliposomal therapy was able to significantly improve bFGF accumulation in brain tissues (p<0.
View Article and Find Full Text PDFA critical issue for alcohol-induced liver disease (ALD) therapeutics is the lack of a highly efficient delivery system. In this study, a Puerarin-propylene glycol-liposome system was prepared for the purpose of targeting puerarin, an isoflavon, to the liver. Transmission electron microscope (TEM) results showed the liposomes to be spherical in shape with an average diameter of 182 nm with a polydispersity index of 0.
View Article and Find Full Text PDFAcidic fibroblast growth factor (aFGF) has shown the great potential to prevent the structural and functional injuries caused by diabetic cardiomyopathy (DCM). The present study sought to investigate the preclinical performance and mechanism of the combination therapy of aFGF-nanoparticles (aFGF-NP) and ultrasound-targeted microbubble destruction (UTMD) technique for DCM prevention. From Mason staining and TUNEL staining, aFGF-NP+UTMD group showed significant differences from the diabetes group and other groups treated with aFGF or aFGF-NP.
View Article and Find Full Text PDFCancer Chemother Pharmacol
February 2016
Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge.
View Article and Find Full Text PDFObjective: Nerve growth factor (NGF) has potential in spinal cord injury (SCI) therapy, but limited by the poor physicochemical stability and low ability to cross the blood spinal cord barrier. Novel heparin-poloxamer (HP) thermo-sensitive hydrogel was constructed to enhance the NGF regeneration on SCI.
Method: NGF-HP thermo-sensitive hydrogel was prepared and related characteristics including gelation temperature, rheological behavior and micromorphology were measured.