Publications by authors named "Kai-Heng Fang"

Down syndrome (DS) is caused by trisomy 21, and it is characterized by developmental brain disorders and neurological dysfunction. Clinical studies and basic research have revealed that defects in mitochondrial function contribute to the pathogenesis of DS. However, the underlying mechanisms of mitochondrial dysfunction in DS remain unclear.

View Article and Find Full Text PDF

Down syndrome (DS), caused by trisomy of chromosome 21, occurs in 1 of every 800 live births. Early defects in cortical development likely account for the cognitive impairments in DS, although the underlying molecular mechanism remains elusive. Here, we performed histological assays and unbiased single-cell RNA-Seq (scRNA-Seq) analysis on cerebral organoids derived from 4 euploid cell lines and from induced pluripotent stem cells (iPSCs) from 3 individuals with trisomy 21 to explore cell-type-specific abnormalities associated with DS during early brain development.

View Article and Find Full Text PDF

Numerous studies have used human pluripotent stem cell-derived cerebral organoids to elucidate the mystery of human brain development and model neurological diseases in vitro, but the potential for grafted organoid-based therapy in vivo remains unknown. Here, we optimized a culturing protocol capable of efficiently generating small human cerebral organoids. After transplantation into the mouse medial prefrontal cortex, the grafted human cerebral organoids survived and extended projections over 4.

View Article and Find Full Text PDF

Establishing an effective three-dimensional (3D) culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells.

View Article and Find Full Text PDF

Human GABAergic interneurons (GIN) are implicated in normal brain function and in numerous mental disorders. However, the generation of functional human GIN subtypes from human pluripotent stem cells (hPSCs) has not been established. By expressing LHX6, a transcriptional factor that is critical for GIN development, we induced hPSCs to form GINs, including somatostatin (SST, 29%) and parvalbumin (PV, 21%) neurons.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC)-based cell-replacement therapy has emerged as a promising approach for addressing numerous neurological diseases. However, hPSC transplantation has the potential to cause human cell overgrowth and cancer, which represents a major obstacle to implementing hPSC-based therapies. Inhibition of the overgrowth of transplanted cells could help reduce the risk for hPSC transplantation-induced tumorigenesis.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) play important role in studying the function of human glutamatergic neurons and related disease pathogenesis. However, the current hPSC-derived cortical system produced a significant number of inhibitory GABAergic neurons that reduced the purity of excitatory neurons. In this study, we established a robust hPSC-derived cortical neurogenesis system by applying the SHH inhibitor cyclopamine.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) have potential to differentiate to unlimited number of neural cells, which provide powerful tools for neural regeneration. To date, most reported protocols were established with an animal feeder system. However, cells derived on this system are inappropriate for the translation to clinical applications because of the introduction of xenogenetic factors.

View Article and Find Full Text PDF