Benzene-based 1,1-dicyanomethylene-3-indanone (IC) derivatives have been widely utilized as the end-group to construct acceptor-donor-acceptor type nonfullerene acceptors (A-D-A type NFAs). The extension of the end-group conjugation of nonfullerene acceptors (NFAs) is a rational strategy to facilitate intermolecular stacking of the end-groups which are responsible for efficient electron transportation. A bicyclic benzothiophene-based end-group acceptor, 2-(3-oxo-2,3-dihydro-1-benzo[]cyclopenta[]thiophen-1-ylidene)malononitrile, denoted as α-BC was designed and synthesized.
View Article and Find Full Text PDFIn this research, we developed six new selenophene-incorporated naphthobisthiadiazole-based donor-acceptor polymers PNT2Th2Se-OD, PNT2Se2Th-OD, PNT4Se-OD, PNT2Th2Se-DT, PNT2Se2Th-DT, and PNT4Se-DT. The structure-property relationships have been systematically established through the comparison of their structural variations: (1) isomeric biselenophene/bithiophene arrangement between PNT2Th2Se and PNT2Se2Th polymers, (2) biselenophene/bithiophene and quarterselenophene donor units between PNT2Th2Se/PNT2Se2Th and PNT4Se polymers, and (3) side-chain modification between the 2-octyldodecylthiophene (OD)- and 2-decyltetradecyl (DT)-series polymers. The incorporation of selenophene units in the copolymers induces stronger charge transfer to improve the light-harvesting capability while maintaining the strong intermolecular interactions to preserve the intrinsic crystallinity for high carrier mobility.
View Article and Find Full Text PDFA new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (CF) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the CF groups and the surface of fullerene, the P3HT:PCBM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy.
View Article and Find Full Text PDF