Publications by authors named "Kai-Chia Feng"

Acute myelogenous leukemia (AML) is a heterogeneous disease consisting of a variety of different leukemic subtypes. While acute promyelocytic leukemia displays marked sensitivity to the differentiating effects of trans-retinoic acid (tRA), other subtypes of AML display resistance. We now describe a novel compound (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC/MM002) that induces apoptosis in the tRA-resistant leukemia cell lines M07e, KG-1, and HL-60R, and in tRA-resistant patient leukemic blasts.

View Article and Find Full Text PDF

We have recently described a novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (CD437/AHPN) that induces apoptosis in a number of malignant cell types. We now describe our studies examining the effects of CD437 and a nonretinoidal analog (MM002) on the in vitro proliferation of the ALL-REH cell line, the in vitro and in vivo growth of a novel Epstein-Barr virus-negative (EBV(-)) B-cell chronic lymphocytic leukemia (B-CLL) cell line (WSU-CLL), and primary cultures of human B-CLL and acute lymphoblastic leukemia (ALL) cells. CD437 and MM002 induce apoptosis in both cell lines, as indicated by the activation of caspase-2 and caspase-3, cleavage of poly(adenosine diphosphate-ribose) (poly(ADP-ribose)) polymerase, increase in annexin V binding, and subsequent nuclear fragmentation.

View Article and Find Full Text PDF

Apo and holo forms of retinoic acid receptors, and other nuclear receptors, display differential sensitivity to proteolytic digestion that likely reflects the distinct conformational states of the free and liganded forms of the receptor. We have developed a method for rapid peptide mapping of holo-retinoic acid receptor gamma that utilizes matrix-assisted laser-desorption-ionization time-of-flight MS to identify peptide fragments that are derived from the partially proteolysed holo-receptor. The peptide maps of retinoic acid receptor gamma bound by four different agonists were identical, suggesting that all four ligands induced a similar conformational change within the ligand-binding domain of the receptor.

View Article and Find Full Text PDF