Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR.
View Article and Find Full Text PDFBreast cancer is the most common type of cancer in women and notwithstanding important therapeutic advances, remains the second leading cause of cancer-related death. Despite extensive research relating to the hormone ghrelin, responsible for the stimulation of growth hormone release and appetite, little is known of the effects of its unacylated form, especially in cancer. The present study aimed to characterize effects of unacylated ghrelin on breast cancer cells, define its mechanism of action, and explore the therapeutic potential of unacylated ghrelin or analog AZP-531.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease affecting motor neurons. Hexanucleotide (GGGGCC) repeat expansions in a non-coding region of C9orf72 are the major cause of familial ALS and frontotemporal dementia (FTD) worldwide. The C9orf72 repeat expansion undergoes repeat-associated non-ATG (RAN) translation to produce five dipeptide repeat proteins (DRPs), including poly(GR) and poly(PR).
View Article and Find Full Text PDFCu/Zn-superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disorder and the majority of ALS is sporadic, where misfolding and aggregation of Cu/Zn-superoxide dismutase (SOD1) is a feature shared with familial mutant-SOD1 cases. ALS is characterized by progressive neurospatial spread of pathology among motor neurons, and recently the transfer of extracellular, aggregated mutant SOD1 between cells was demonstrated in culture. However, there is currently no evidence that uptake of SOD1 into cells initiates neurodegenerative pathways reminiscent of ALS pathology.
View Article and Find Full Text PDFProtein disulfide isomerase (PDI) family members are important enzymes for the correct folding and maturation of proteins that transit or reside in the endoplasmic reticulum (ER). The human PDI family comprises at least 19 members that differ in cell type expression, substrate specificity and post-translational modifications. PDI family A member 2 (PDIA2, previously known as PDIp) has a similar domain structure to prototypical PDI (also known as PDIA1), but the function and post-translational modifications of PDIA2 remain poorly understood.
View Article and Find Full Text PDF