Publications by authors named "Kai Yang"

Nitrogen removal via anammox is efficient but challenged by their slow growth. Adding granular activated carbon (GAC) increased the total nitrogen removal rate to 66.99 g-N/m/day, compared to 50.

View Article and Find Full Text PDF

Oxygen-free copper is utilized in nuclear processing heaters; however, it exhibits poor resistance to hydrogen radiation corrosion. A tantalum-copper diffusion layer with high vacancy concentration was prepared on the copper surface. This layer demonstrates superior hydrogen trapping and diffusion resistance compared to pure tantalum, though the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Lysozymes are crucial enzymes involved in the innate immune response against bacterial pathogens. In this study, we identified and characterized a goose-type lysozyme gene (SsLyG) from the black rockfish Sebastes schlegelii, an economically important aquaculture species. The deduced amino acid sequence of SsLyG contains 495 residues, which inculded a signal peptide, an immunoglobulin domain, and a goose egg-white lysozyme (GEWL) domain.

View Article and Find Full Text PDF

Multifunctional organic light-emitting transistors (OLETs), which combine electric-switching and light-producing capabilities into a single device, are attracting increasing interest as promising candidates for new-generation display technology. Despite advancements in the design of organic luminescent materials and the optimization of device geometry configurations, maintaining operating voltage low while enhancing optical performances remains a key challenge in horizontally structured OLETs. Here, a simple and effective interfacial engineering strategy is employed to improve the optical properties of horizontal OLETs operating at low voltage, by introducing ultraviolet ozone (UVO)-induced surface modification on high-k dielectrics.

View Article and Find Full Text PDF

Bacteria play a crucial role in biodegradation of recalcitrant endocrine-disrupting compounds (EDCs), such as bisphenol A (BPA). However, in-situ identification of BPA-degrading bacteria remains technically challenging. Herein, we employed a conventional plating isolation (PI) and a new single cell Raman spectroscopy coupled with stable isotope probing (Raman-SIP) approach to enrich and identify BPA-degrading bacteria from activated sludge (AS).

View Article and Find Full Text PDF

Aqueous Zn-ion batteries (AZIBs) are widely acknowledged as viable future energy storage solutions, particularly for low-cost stationary applications. However, the interfacial instability of zinc anodes represents a major challenge to the commercial potential of Zn-ion systems, promoting an array of side reactions including spontaneous corrosion, hydrogen evolution, and dendrite growth that destabilize cell performance, lower Coulombic efficiency (CE) and ultimately lead to early cell failure. While other commercially relevant battery systems benefit from a spontaneously forming solid electrolyte interphase (SEI), no such layer forms in AZIBs.

View Article and Find Full Text PDF

Background: Long-term unobtrusive monitoring of breathing patterns can potentially give a more realistic insight into the respiratory health of people with asthma or chronic obstructive pulmonary disease than brief tests performed in medical environments. However, it is uncertain whether users would be willing to wear these sensor garments long term.

Objective: Our objective was to explore whether users would wear ordinary looking knitted garments with unobtrusive knitted-in breathing sensors long term to monitor their lung health and under what conditions.

View Article and Find Full Text PDF

Cognitive overload, as an overload state of cognitive workload, negatively impacts individuals' task performance and mental health. Cognitive overload assessment models based on Electroencephalography (EEG) can effectively prevent the occurrence of overload through early warning, thereby enhancing task execution efficiency and safeguarding individuals' mental health. Although existing EEG-based cognitive load assessment methods have achieved significant research outcomes, evaluating cognitive overload remains an ongoing challenge.

View Article and Find Full Text PDF

The catalytic asymmetric synthesis of axially chiral alkenes remains a daunting challenge due to the lower rotational barrier, especially for longer stereogenic axis (e.g. C-B axis).

View Article and Find Full Text PDF

Submergence tolerance is a complex trait governed by multiple genetic loci. Arabidopsis thaliana, widely distributed from arid to humid regions, offers an opportunity to explore the underlying genetic components and their interactive mechanisms. In this study, we utilized map-based cloning techniques to identify the WRKY22 genetic locus, which activates RAP2.

View Article and Find Full Text PDF

Aqueous Ni-Zn microbatteries are safe, reliable and inexpensive but notoriously suffer from inadequate energy and power densities. Herein, we present a novel mechanism of superoxide-activated Ni substrate that realizes the redox reaction featuring three-electron transfers (Ni ↔ Ni). The superoxide activates the direct redox reaction between Ni substrate and KNiO by lowering the reaction Gibbs free energy, supported by in-situ Raman and density functional theory simulations.

View Article and Find Full Text PDF

Parkinson's disease (PD), a prevalent neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein accumulation, has been increasingly associated with coagulation dysfunction. This review synthesizes emerging evidence linking dysregulated coagulation to PD pathophysiology. We examine the alterations in coagulation parameters, including elevated fibrinogen levels, impaired fibrinolysis, and platelet dysfunction, which collectively contribute to a hypercoagulable state in PD patients.

View Article and Find Full Text PDF

Colonic barrier dysfunction and inflammation arising from dysbiosis gut microbiota (GM) are strongly associated with a high-fat diet (HFD). Yellow leaf green tea (YLGT), a novel variety of etiolated-green tea, improving the intestinal barrier and inflammation is related to the regulation of GM disorders. To explore the ameliorative mechanism of YLGT, mice were fed an HFD with or without YLGT at doses of 150, 300, and 450 mg kg for 12 weeks.

View Article and Find Full Text PDF

Arc sound signals are considered appropriate for detecting penetration states in cold metal transfer (CMT) welding because of their noninvasive nature and immunity to interference from splatter and arc light. Nevertheless, the stability of arc sound signals is suboptimal, the conventional feature extraction methods are inefficient, and the significance of arc sound attributes for determining penetration statuses is often overlooked. In this study, a compact convolutional neural network (CNN) model is proposed for the adaptive extraction of features from arc sound signals.

View Article and Find Full Text PDF

Pathogenic genes in most patients with cleidocranial dysplasia have been confirmed to be runt-related transcription factor 2 (), which controls mutations in specific osteoblast transcription factors and affects skull ossification and suture adhesion. This study aimed to explore the role of mutations. Here, we report a rare case of a splice site mutation in a Chinese population with typical cleidocranial dysplasia symptoms, cranial suture insufficiency, clavicle dysplasia, and dental anomalies.

View Article and Find Full Text PDF
Article Synopsis
  • New-onset atrial fibrillation (AF) in sepsis significantly worsens patient outcomes, but an ideal animal model for research is not yet established.
  • This study utilized Sprague-Dawley rats to determine the best conditions for inducing new-onset AF through cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injections, discovering that 10 mg/kg LPS injection produces the most stable model.
  • Results indicated that this model displayed serious heart function issues, increased inflammation, and molecular changes linked to AF, notably the activation of the NLRP3 inflammasome and S1P/S1P2 signaling pathway.
View Article and Find Full Text PDF

Introduction: Odontoblasts, terminally differentiated dentin-producing cells, critically rely on lysosomal functions for intracellular recycling and renewal. Beyond their traditional degradative role, lysosomes actively orchestrate cellular responses to external stimuli through precise and rapid intracellular trafficking and positioning. This study aimed to explore the influence of lysosomal positioning on odontoblast mineralization and the underlying mechanisms implicated in carious inflammation.

View Article and Find Full Text PDF

Background: In acute liver injury (ALI), cell membrane damage could induce an inflammatory response and oxidative stress. As a membrane glycerophospholipid, plasmalogens (PLS) are crucial in regulating the cell membrane properties and exhibit beneficial effects in various liver diseases. However, the specific regulatory effects of PLS in the ALI remain unknown.

View Article and Find Full Text PDF

Scope: Obesity by high-fat diets (HFDs) is a chronic metabolic disorder that poses a significant threat to human health. Tea polyphenols (TPs) can prevent obesity caused by HFD by modulating gut microbiota.

Methods And Results: To explore the function of TP in mitigating the effects of obesity and inflammation, mice are fed HFDs either with or without TP.

View Article and Find Full Text PDF

Controlling the digestibility and gel properties of Tartary buckwheat starch (TBS) has become a central issue for functional foods. The effects of hydroxypropyl methylcellulose (HPMC), guar gum (GG) and Konjac glucomannan (KGM) on TBS from the interaction and structural perspectives were studied. Three hydrocolloids increased the peak, trough and final viscosity of TBS in a concentration-dependent manner.

View Article and Find Full Text PDF

When analysing the effect of negative temperature on overwintering pit constructions of unsaturated soil, using the mechanical parameter of saturated soil at room temperature leads to an inaccuracy in the research findings. The strength parameters are obtained through indoor experiments. The foundation pit model is created using FLAC3D numerical simulation software based on the indoor experimental data.

View Article and Find Full Text PDF