The fast development of artificial intelligence and big data drives the exploration of low-power computing hardware. Neuromorphic devices represented by memristors may provide a possible computing paradigm beyond von Neumann's architecture because they enable the integration of processing and storage units by mimicking how the brain processes complex information in parallel. In the brain, information is processed via multilevel spiking coding and event-driven mechanisms, whose simplified neural circuit is represented by the leaky-integration-and-fire model combining volatile threshold switching memristors and capacitors.
View Article and Find Full Text PDFPelletization of biomass fuels has been promoted as an effective alternative to mitigate particulate matter (PM) emissions from the residential burning of raw biomass materials; however, environmentally persistent free radicals (EPFRs), a class of harmful components in PM, from the biomass pellet burning have been rarely studied yet. Here, laboratory-based combustion experiments were conducted to characterize EPFRs for different pellets burned in cooking and heating stoves and compared with those for the corresponding uncompressed biofuels. Emission factors (EFs) of EPFRs for biomass pellets ranged from 2.
View Article and Find Full Text PDFThe effective and precise processing of visual information by the human eye primarily relies on the diverse contrasting functions achieved through synaptic regulation of ion transport in the retina. Developing a bio-inspired retina that uses ions as information carriers can more accurately replicate retina's natural signal processing capabilities, enabling high-performance machine vision. Herein, an ion-confined transport strategy is proposed to construct a bio-inspired retina by developing artificial synapses with inhibitory and excitatory contrasting functions.
View Article and Find Full Text PDFNeuromorphic devices are designed to replicate the energy-efficient information processing advantages found in biological neural networks by emulating the working mechanisms of neurons and synapses. However, most existing neuromorphic devices focus primarily on functionally mimicking biological synapses, with insufficient emphasis on ion transport mechanisms. This limitation makes it challenging to achieve the complexity and connectivity inherent in biological systems, such as ephaptic coupling.
View Article and Find Full Text PDFOsteoarthritis (OA) is a multifactorial degenerative disorder entailing cartilage loss and progressive joint failure. m6A RNA methylation could impact multiple disorders, including OA. In this study, mA methylation regulator WTAP was down-regulated in OA cartilage, accompanied by significantly lower mA methylation levels in OA tissues.
View Article and Find Full Text PDFObjective: To compare the clinical efficacy of total hip arthroplasty (THA) with or without dual mobility cup (DMC) vs. hemiarthroplasty (HA) in elderly Asian patients with acute femoral neck fracture (FNF).
Methods: Data of 284 elderly FNF patients treated at our institution from January 2017 to December 2021 were retrospectively collected.
Sulfur mustard (SM) is an extremely toxic chemical warfare agent. Although SM-induced toxicity has long been studied, due to its complexity, the characterization of the precise molecular pathway it targets has been remaining an ongoing area of research. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hucMSC-EVs) are natural substances that participate in intercellular communication by delivering microRNA to target cells.
View Article and Find Full Text PDFBioactive nanomaterials have been extensively utilized in medical applications. There are, however, very few reports on clinical applications of methylated β-cyclodextrin-derived supramolecular bioactive nanoagents, particularly in relation to the chemical features and biological properties. Herein, we designed and fabricated supramolecular bioactive nanoassemblies derived from permethyl β-cyclodextrin (PMCD) with increased proportions of PMCD on their dendronized side chains and further investigated the impact of chemical structures on their antitumor efficacy.
View Article and Find Full Text PDFIn living organisms, the modulation of ion conductivity in ion channels of neuron cells enables intelligent behaviors, such as generating, transmitting, and storing neural signals. Drawing inspiration from these natural processes, researchers have fabricated ionic devices that replicate the functions of the nervous system. However, this field remains in its infancy, necessitating extensive foundational research in ionic device preparation, algorithm development, and biological interaction.
View Article and Find Full Text PDFRapid validation of newly predicted materials through autonomous synthesis requires real-time adaptive control methods that exploit physics knowledge, a capability that is lacking in most systems. Here, we demonstrate an approach to enable real-time control of thin film synthesis by combining optical diagnostics with a Bayesian state estimation method. We developed a physical model for film growth and applied the direct filter (DF) method for real-time estimation of nucleation and growth rates during pulsed laser deposition (PLD).
View Article and Find Full Text PDFAs an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method.
View Article and Find Full Text PDFPursuing nanomaterials with high fluorescence quantum yields is of great significance in the fields of bioimaging, medical diagnosis, and food safety monitoring. This work reports on orange-emitting aggregation-induced emission (AIE) copper nanoclusters (Cu NCs) integrated with blue-emitting nitrogen-doped carbon dots (N-CDs), which enables highly sensitive detection of S and Zn ions through an off-on ratiometric fluorescence method. The highly emissive Cu NCs was doped by Ce with a high quantum yield of 51.
View Article and Find Full Text PDFIn the present work, artificial neural network (ANN)-based machine learning models are developed to predict biomass pyrolysis kinetics. Data sets of thermogravimetric analysis and feedstock characterization from a diverse range of biomasses were used to build and test the networks. The composition of the raw biomass material was classified and used as input parameters of ANN models.
View Article and Find Full Text PDFEthnopharmacological Relevance: The lateral root of Aconitum carmichaelii Debeaux, or Fuzi, is recognized in Asia for its anti-inflammatory, analgesic, and cardiotonic effects. Its main active compounds are diester diterpenoid alkaloids (DDAs) such as aconitine (AC), mesoacitine (MA), and hypoaconitine (HA), which are also toxic and have a narrow therapeutic window, limiting their clinical use. Although Aconitum DDAs are known for cardiotoxic and neurotoxic effects, their impact on embryonic development remains unclear.
View Article and Find Full Text PDFIsocitrate dehydrogenase (IDH) and O-methylguanine-DNA methyltransferase (MGMT) genes are critical molecular markers in determining treatment options and predicting the prognosis of adult-type diffuse gliomas. : this study aimed to investigate whether multimodal MRI enables the differentiation of genotypes in adult-type diffuse gliomas. : a total of 116 adult-type diffuse glioma patients (61 males, 51.
View Article and Find Full Text PDFDistinct target genes are modulated by microRNA members and affect various biological processes associated with abiotic stress responses in plants. In this study, we characterized a functional module comprising miRNA/target and a downstream MYB transcription factor partner, Tae-MIR1118/TaCaM2/TaMYB44, in Triticum aestivum to mediate the plant low-nitrogen (N) stress response. Dual luciferase (LUC) assay and expression analysis indicated that TaCaM2 is regulated by Tae-MIR1118 through a posttranscriptional cleavage mechanism.
View Article and Find Full Text PDFEfficacious strategies for early detection of lung cancer metastasis are of significance for improving the survival of lung cancer patients. Here we show the marker genes and serum secretome foreshadowing the lung cancer site-specific metastasis through dynamic network biomarker (DNB) algorithm, utilizing two clinical cohorts of four major types of lung cancer distant metastases, with single-cell RNA sequencing (scRNA-seq) of primary lesions and liquid chromatography-mass spectrometry data of sera. Also, we locate the intermediate status of cancer cells, along with its gene signatures, in each metastatic state trajectory that cancer cells at this stage still have no specific organotropism.
View Article and Find Full Text PDFThe abscisic acid (ABA) signalling pathway plays a crucial role in plants' response to drought stress. In this study, we aimed to characterize the impact of an ABA signalling module, which consisted of TaPYL9 and its downstream partners in Triticum aestivum, on plant drought adaptation. Our results showed that TaPYL9 protein contains conserved motifs and targets plasma membrane and nucleus after being sorted by the endoplasmic reticulum.
View Article and Find Full Text PDFSevere indoor air pollution from solid-fuel combustion is a global health concern. Although stove chimneys can expel most of the smoke to outside, unignorable amounts can remain indoors, known as indoor fugitive emissions. Quantitative analyses of indoor emission rates (IER) and indoor fugitive fractions (IFF) are limited, particularly in field settings.
View Article and Find Full Text PDFHerein, we presented an ultrasensitive Aflatoxin B1 (AFB1) detection platform based on vertical organic electrochemical transistor (vOECT) first time. Chitosan-graphene nanosheets nanocomposites and AFB1 antibodies were modified on commercial electrodes as immunosensors, in series with gate electrodes of vOECT, operated at enhancement mode with ultrahigh transconductance g 94 mS to amplify current signals. When AFB1 is added, the impedance of the immunosensors increased due to antigen-antibody immune binding, resulting in a potential decrease in reaction cell.
View Article and Find Full Text PDFWheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T.
View Article and Find Full Text PDF