The G12D mutation is among the most common KRAS mutations associated with cancer, in particular, pancreatic cancer. Here, we have developed monobodies, small synthetic binding proteins, that are selective to KRAS(G12D) over KRAS(wild type) and other oncogenic KRAS mutations, as well as over the G12D mutation in HRAS and NRAS. Crystallographic studies revealed that, similar to other KRAS mutant-selective inhibitors, the initial monobody bound to the S-II pocket, the groove between switch II and α3 helix, and captured this pocket in the most widely open form reported to date.
View Article and Find Full Text PDFMutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors.
View Article and Find Full Text PDFRAS mutants are major therapeutic targets in oncology with few efficacious direct inhibitors available. The identification of a shallow pocket near the Switch II region on RAS has led to the development of small-molecule drugs that target this site and inhibit KRAS(G12C) and KRAS(G12D). To discover other regions on RAS that may be targeted for inhibition, we have employed small synthetic binding proteins termed monobodies that have a strong propensity to bind to functional sites on a target protein.
View Article and Find Full Text PDFinfection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion.
View Article and Find Full Text PDFMolecular display technologies have enabled the generation of synthetic binders with high affinities against a variety of antigens. However, engineering binders with high selectivity is still a challenging task. Here, we illustrate points to consider in developing highly selective binders against antigens of interest.
View Article and Find Full Text PDFRAS guanosine triphosphatases (GTPases) are mutated in nearly 20% of human tumors, making them an attractive therapeutic target. Following our discovery that nucleotide-free RAS (apo RAS) regulates cell signaling, we selectively target this state as an approach to inhibit RAS function. Here, we describe the R15 monobody that exclusively binds the apo state of all three RAS isoforms in vitro, regardless of the mutation status, and captures RAS in the apo state in cells.
View Article and Find Full Text PDFinfection is associated with several gastric diseases, including gastritis, peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma. Due to the prevalence and severeness of infection, a thorough understanding of this pathogen is necessary. Lipopolysaccharide, one of the major virulence factors of , can exert immunomodulating and immunostimulating functions on the host.
View Article and Find Full Text PDFDespite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques.
View Article and Find Full Text PDFNADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8) is a nuclear-encoded core subunit of human mitochondrial complex I. Defects in NDUFS8 are associated with Leigh syndrome and encephalomyopathy. Cell-penetrating peptide derived from the HIV-1 transactivator of transcription protein (TAT) has been successfully applied as a carrier to bring fusion proteins into cells without compromising the biological function of the cargoes.
View Article and Find Full Text PDFinfection is linked to serious gastric-related diseases including gastric cancer. However, current therapies for treating infection are challenged by the increased antibiotic resistance of . Therefore, it is in an urgent need to identify novel targets for drug development against infection.
View Article and Find Full Text PDFActivating mutants of RAS are commonly found in human cancers, but to date selective targeting of RAS in the clinic has been limited to KRAS(G12C) through covalent inhibitors. Here, we report a monobody, termed 12VC1, that recognizes the active state of both KRAS(G12V) and KRAS(G12C) up to 400-times more tightly than wild-type KRAS. The crystal structures reveal that 12VC1 recognizes the mutations through a shallow pocket, and 12VC1 competes against RAS-effector interaction.
View Article and Find Full Text PDFKRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy.
View Article and Find Full Text PDFIn this study, a novel antiadhesion membrane made of polycaprolactone, gelatin, and chitosan was fabricated using the electrospinning technique. A series of polycaprolactone/gelatin/chitosan (PGC) electrospun membranes with different amounts of chitosan (0%, 0.5%, 1%, and 2% in weight percentage) was synthesized.
View Article and Find Full Text PDFProtoporphyrin IX (PPIX) is a photodynamic therapy (PDT) agent for the treatment of various types of cancer. The effectiveness of PDT is believed to be associated with aggregation of PPIX in cells. However, the aggregation equilibrium of PPIX in the cellular environment and in solution is still poorly understood.
View Article and Find Full Text PDFStimulated emission depletion microscopy (STED) is one of the pivotal super-resolution techniques. It overcomes the spatial resolution limit imposed by the diffraction by using an additional laser beam, the STED beam, intensity of which is directly related to the achievable resolution. Despite reaching nanometer resolution, much effort in recent years has been devoted to reducing the STED beam intensity because it may lead to photo-damaging effects.
View Article and Find Full Text PDFCurr Protoc Protein Sci
August 2018
Methods to efficiently deliver fluorophores across the cell membrane are crucial for imaging the dynamics of intracellular proteins using fluorescence. Here we describe a simple protocol for permeabilizing living cells using streptolysin O, a bacterial toxin, which allows transient uptake of fluorescent probes for labeling specific intracellular proteins. The technique is applicable for delivering different classes of fluorescent probes with a molecular weight of <150 kDa, and it is also applicable to a variety of different cell lines.
View Article and Find Full Text PDFPrevious studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers.
View Article and Find Full Text PDF