Publications by authors named "Kai WeiSSenbruch"

In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells.

View Article and Find Full Text PDF
Article Synopsis
  • S100A11 is a calcium-activated protein that localizes at focal adhesions (FAs) in cells, showing increased levels before FA disassembly.
  • Intracellular calcium elevation triggers S100A11 recruitment and promotes FA disassembly, but this process depends on actomyosin activity and the Piezo1 calcium channel.
  • Cells lacking S100A11 exhibit larger FAs and slower disassembly, highlighting its role in facilitating FA turnover and actomyosin-driven contraction.
View Article and Find Full Text PDF

Cells mechanical behaviour in physiological environments is mediated by interactions with the extracellular matrix (ECM). In particular, cells can adapt their shape according to the availability of ECM proteins, e.g.

View Article and Find Full Text PDF

Integrin-mediated adhesions are convergence points for multiple signaling pathways. Their inner structure and diverse functions can be studied with super-resolution microscopy. Here, we examined the spatial organization within focal adhesions by analyzing several adhesion proteins with structured illumination microscopy (SIM).

View Article and Find Full Text PDF

Nonmuscle myosin II minifilaments have emerged as central elements for force generation and mechanosensing by mammalian cells. Each minifilament can have a different composition and activity due to the existence of the three nonmuscle myosin II paralogs A, B and C and their respective phosphorylation pattern. We have used CRISPR/Cas9-based knockout cells, quantitative image analysis and mathematical modeling to dissect the dynamic processes that control the formation and activity of heterotypic minifilaments and found a strong asymmetry between paralogs A and B.

View Article and Find Full Text PDF

Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification.

View Article and Find Full Text PDF

Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates.

View Article and Find Full Text PDF

Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between β-cyclodextrin (host) and adamantane (guest).

View Article and Find Full Text PDF

αVβ3 integrin can bind to multiple extracellular matrix proteins, including vitronectin (Vn) and fibronectin (Fn), which are often presented to cells in culture as homogenous substrates. However, in tissues, cells experience highly complex and changing environments. To better understand integrin ligand selection in such complex environments, we employed binary-choice substrates of Fn and Vn to dissect αVβ3 integrin-mediated binding to different ligands on the subcellular scale.

View Article and Find Full Text PDF

The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions.

View Article and Find Full Text PDF