Publications by authors named "Kai WaSSer"

Planetary habitation requires technology to maintain natural microbial processes, which make nutrients from biowaste available for plant cultivation. This study describes a 646 day experiment, in which trickling filters were monitored for their ability to mineralize nitrogen when loaded with artificial urine solutions of different concentrations (40, 60, 80 and 100% v/v). Former studies have indicated that increasing urine concentrations slow nitrogen conversion rates and induce growing instability.

View Article and Find Full Text PDF

The reutilization of wastewater is a key issue with regard to long-term space missions and planetary habitation. This study reports the design, test runs and microbiological analyses of a fixed bed biofiltration system which applies pumice grain (16-25 mm grain size, 90 m(2)/m(3) active surface) as matrix and calcium carbonate as buffer. For activation, the pumice was inoculated with garden soil known to contain a diverse community of microorganisms, thus enabling the filtration system to potentially degrade all kinds of organic matter.

View Article and Find Full Text PDF

The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity.

View Article and Find Full Text PDF

This study focuses on the effects of short-term [22 s, parabolic flight campaign (PFC)] and long-term (10 d, Shenzhou 8 space mission) real microgravity on changes in cytokine secretion and gene expression patterns in poorly differentiated thyroid cancer cells. FTC-133 cells were cultured in space and on a random positioning machine (RPM) for 10 d, to evaluate differences between real and simulated microgravity. Multianalyte profiling was used to evaluate 128 secreted cytokines.

View Article and Find Full Text PDF

It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities.

View Article and Find Full Text PDF