Publications by authors named "Kai Thomenius"

Acoustic beam shaping with high degrees of freedom is critical for applications such as ultrasound imaging, acoustic manipulation, and stimulation. However, the ability to fully control the acoustic pressure profile over its propagation path has not yet been achieved. Here, we demonstrate an acoustic diffraction-resistant adaptive profile technology (ADAPT) that can generate a propagation-invariant beam with an arbitrarily desired profile.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a significant cause of diffuse liver disease, morbidity and mortality worldwide. Early and accurate diagnosis of NALFD is critical to identify patients at risk of disease progression. Liver biopsy is the current gold standard for diagnosis and prognosis.

View Article and Find Full Text PDF

This study validates a non-invasive, quantitative technique to diagnose steatosis within tissue. The proposed method is based on two fundamental concepts: (i) the speed of sound in a fatty liver is lower than that in a healthy liver and (ii) the quality of an ultrasound image is maximized when the beamformer's speed of sound matches the speed in the medium under examination. The method uses image brightness and sharpness as quantitative image-quality metrics to predict the true sound speed and capture the effects of fat infiltration, while accounting for the transmission through subcutaneous fat.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is a condition that is characterized by the presence of >5% fat in the liver and affects more than one billion people worldwide. If adequate and early precautions are not taken, non-alcoholic fatty liver disease can progress to cirrhosis and death. The current reference standard for detecting hepatic steatosis is a liver biopsy.

View Article and Find Full Text PDF

Described here is a method to determine the longitudinal speed of sound in speckle-dominated ultrasound images. The method is based on the concept that the quality of an ultrasound image is maximized when the beamformer's speed of sound matches the speed in the medium. The method captures the quality of the ultrasound image using two quantitative image-quality metrics: image brightness and sharpness around the intended focal zone.

View Article and Find Full Text PDF

We propose a Column-Row-Parallel imaging frontend architecture for integrated and low-power 3D medical ultrasound imaging. The Column-Row-Parallel architecture offers linear-scaling interconnection, acquisition and programming time with row-by-row or column-by-column operations, while supporting volumetric imaging functionality and fault-tolerance against possible transducer element defects with per-element controls. The combination of column-parallel selection logic, row-parallel selection logic, and per-element selection logic reaches a balance between flexible imaging aperture definition and manageable imaging data / control interface to a 2D array.

View Article and Find Full Text PDF

We propose a column-row-parallel imaging front-end architecture for integrated and low-power 3-D medical ultrasound imaging. The column-row-parallel architecture offers linear-scaling interconnection, acquisition, and programming time with row-by-row or column-by-column operations, while supporting volumetric imaging functionality and fault-tolerance against possible transducer element defects with per-element controls. The combination of column-parallel selection logic, row-parallel selection logic, and per-element selection logic reaches a balance between flexible imaging aperture definition and manageable imaging data/control interface to a 2-D array.

View Article and Find Full Text PDF

This paper introduces a non-invasive, quantitative technique to diagnose the progression of non-alcoholic fatty liver disease (NAFLD). The method is predicated on two fundamental principles: 1) the speed of sound in a fatty liver is lower than that in a healthy liver and 2) the quality of an ultrasound image is maximized when the beamformer's speed of sound matches the true speed of sound in the tissue being examined. The proposed method uses the echogenicity of an ultrasound image as a quantitative measure to estimate the true speed of sound within the liver parenchyma and capture its correlation with the underlying fat content.

View Article and Find Full Text PDF

The design and performance of a mammographically configured, dual-sided, automated breast ultrasound (ABUS) 3-D imaging system are described. Dual-sided imaging (superior and inferior) is compared with single-sided imaging to aid decisions on clinical implementation of the more complex, but potentially higher-quality dual-sided imaging. Marked improvement in image quality and coverage of the breast is obtained in dual-sided ultrasound over single-sided ultrasound.

View Article and Find Full Text PDF

Background: Low levels of HDL-C are an independent cardiovascular risk factor associated with increased premature cardiovascular death. However, HDL-C therapies historically have been limited by issues relating to immunogenicity, hepatotoxicity and scalability, and have been ineffective in clinical trials.

Objective: We examined the feasibility of using injectable acoustic microspheres to locally deliver human ApoA-I DNA plasmids in a pre-clinical model and quantify increased production of HDL-C in vivo.

View Article and Find Full Text PDF

Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume.

View Article and Find Full Text PDF

A promising transducer architecture for largearea arrays employs 2-D capacitive micromachined ultrasound transducer (CMUT) devices with backside trench-frame pillar interconnects. Reconfigurable array (RA) application-specified integrated circuits (ASICs) can provide efficient interfacing between these high-element-count transducer arrays and standard ultrasound systems. Standard electronic assembly techniques such as flip-chip and ball grid array (BGA) attachment, along with organic laminate substrate carriers, can be leveraged to create large-area arrays composed of tiled modules of CMUT chips and interface ASICs.

View Article and Find Full Text PDF

Mosaic annular arrays (MAA) based on reconfigurable array (RA) transducer electronics assemblies are presented as a potential solution for future highly integrated ultrasonic transducer subsystems. Advantages of MAAs include excellent beam quality and depth of field resulting from superior elevational focus compared with 1-D electronically scanned arrays, as well as potentially reduced cost, size, and power consumption resulting from the use of a limited number of beamforming channels for processing a large number of subelements. Specific design tradeoffs for these highly integrated arrays are discussed in terms of array specifications for center frequency, element pitch, and electronic switch-on resistance.

View Article and Find Full Text PDF

Objectives: The ability to estimate tissue perfusion (in milliliter per minute per gram) in vivo using contrast-enhanced 3-dimensional (3D) harmonic and subharmonic ultrasound imaging was investigated.

Materials And Methods: A LOGIQ™ 9 scanner (GE Healthcare, Milwaukee, WI) equipped with a 4D10L probe was modified to perform 3D harmonic imaging (HI; f(transmit), 5 MHz and f(receive), 10 MHz) and subharmonic imaging (SHI; f(transmit), 5.8 MHz and f(receive), 2.

View Article and Find Full Text PDF

Purpose: To compare subharmonic aided pressure estimation (SHAPE) with pressure catheter-based measurements in human patients with chronic liver disease undergoing transjugular liver biopsy.

Materials And Methods: This HIPAA-compliant study had U.S.

View Article and Find Full Text PDF

Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using 1-D linear-array transducers.

View Article and Find Full Text PDF

The efficacy of using subharmonic emissions from Sonazoid microbubbles (GE Healthcare, Oslo, Norway) to track portal vein pressures and pressure changes was investigated in 14 canines using either slow- or high-flow models of portal hypertension (PH). A modified Logiq 9 scanner (GE Healthcare, Milwaukee, WI, USA) operating in subharmonic mode (f(transmit): 2.5 MHz, f(receive): 1.

View Article and Find Full Text PDF

Rationale And Objectives: Although contrast-enhanced ultrasound imaging techniques such as harmonic imaging (HI) have evolved to reduce tissue signals using the nonlinear properties of the contrast agent, levels of background suppression have been mixed. Subharmonic imaging (SHI) offers near complete tissue suppression by centering the receive bandwidth at half the transmitting frequency. The aims of this study were to demonstrate the feasibility of three-dimensional (3D) SHI and to compare it to 3D HI.

View Article and Find Full Text PDF

Objectives: The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures.

View Article and Find Full Text PDF

We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz.

View Article and Find Full Text PDF

Our group has proposed the concept of subharmonic aided pressure estimation (SHAPE) utilizing microbubble-based ultrasound contrast agent signals for the noninvasive estimation of hydrostatic blood pressures. An experimental system for in vitro SHAPE was constructed based on two single-element transducers assembled confocally at a 60 degree angle to each other. Changes in the first, second and subharmonic amplitudes of five different ultrasound contrast agents were measured in vitro at static hydrostatic pressures from 0-186 mmHg, acoustic pressures from 0.

View Article and Find Full Text PDF

A method is introduced to monitor cardiac ablative therapy by examining slope changes in the thermal strain curve caused by speed of sound variations with temperature. The sound speed of water-bearing tissue such as cardiac muscle increases with temperature. However, at temperatures above about 50°C, there is no further increase in the sound speed and the temperature coefficient may become slightly negative.

View Article and Find Full Text PDF

Vibro-acoustography is an ultrasound-based imaging modality that uses two ultrasound beams of slightly different frequencies to produce images based on the acoustic response caused by harmonic ultrasound radiation force excitation at the difference frequency between the two ultrasound frequencies. Vibro-acoustography has demonstrated feasibility and usefulness in imaging of breast and prostate tissue. However, previous studies have been performed either in controlled water tank settings or a prototype breast scanner equipped with a water tank.

View Article and Find Full Text PDF

The thermal index (TI) has been used as a relative indicator of thermal risk during diagnostic ultrasound examinations for many years. It is useful in providing feedback to the clinician or sonographer, allowing assessment of relative, potential risks to the patient of an adverse effect due to a thermal mechanism. Recently, several shortcomings of the TI formulations in quantifying the risk to the patient have been identified by members of the basic scientific community, and possible improvements to address these shortcomings have been proposed.

View Article and Find Full Text PDF