Publications by authors named "Kai S Lipinski"

Leishmaniasis is widely regarded as a vaccine-preventable disease, but the costs required to reach pivotal Phase 3 studies and uncertainty about which candidate vaccines should be progressed into human studies significantly limits progress in vaccine development for this neglected tropical disease. Controlled human infection models (CHIMs) provide a pathway for accelerating vaccine development and to more fully understand disease pathogenesis and correlates of protection. Here, we describe the isolation, characterization and GMP manufacture of a new clinical strain of Leishmania major.

View Article and Find Full Text PDF

Background: Despite spectacular successes in hepatitis B and C therapies, severe hepatic impairment is still a major treatment problem. The clinically tested infectious bursal disease virus (IBDV) superinfection therapy promises an innovative, interferon-free solution to this great unmet need, provided that a consistent manufacturing process preventing mutations or reversions to virulent strains is obtained.

Methods: To address safety concerns, a tissue culture adapted IBDV vaccine strain V903/78 was cloned into cDNA plasmids ensuring reproducible production of a reverse engineered virus R903/78.

View Article and Find Full Text PDF

Background: Predictable and adequate transgene expression is essential for clinical gene therapy. Several studies have focused on optimization of transgene expression. In this study the effect of sodium butyrate (NaB) and a ubiquitous chromatin opening element (UCOE) on short-term gene expression after adenovirus-mediated gene transfer in fibroblastic interface cells from periprosthetic tissue in loosened orthopedic implants is investigated.

View Article and Find Full Text PDF

Nonviral transfections of six low passage human colon cancer cell lines using the artificial beta-catenin/TCF-dependent promoter CTP4 demonstrated a high promoter activity which was 1000- to 70000-fold higher than in HeLa control cells. Luciferase gene expression levels obtained with CTP4 in epithelial-like tumor cell cultures were only slightly lower than with the strong viral CMV promoter/enhancer, whereas in less differentiated tumor cultures CTP4 expression levels exceeded the CMV expression levels up to 28-fold. Three cell lines representing different morphology typical of the original tumors, more differentiated epithelial-like (COGA-5), piled-up (COGA-12), and poorly differentiated rounded-up (COGA-3), were selected for further investigation.

View Article and Find Full Text PDF

Gene-directed enzyme-prodrug therapy (GDEPT) using nitroreductase (NTR), with efficient adenoviral delivery, and CB1954 (CB), is an effective means of directly killing tumours. However, an immune-mediated bystander effect remains an important product of GDEPT since it is often critical to the elimination of untransduced tumour cells both locally and at distal metastatic sites through generation of tumour-specific immunity without the need for tumour antigen identification or the generation of a personalised vaccine. The mode of induced tumour cell death is thought to contribute to the immunisation process, together with the induction and release of stress proteins.

View Article and Find Full Text PDF

Gene-directed enzyme prodrug therapy (GDEPT) is a promising approach to local management of cancer through targeted chemotherapy. Killing localized tumors by GDEPT in a manner that induces strong antitumor cellular immune responses might improve local management and allow benefit in disseminated cancer. Here we evaluated the combination of nitroreductase (NTR)/CB1954 GDEPT with high-level expression of heat shock protein 70 (HSP70, a stress protein that can shuttle cytosolic peptides into antigen-presenting cells) for induction of antitumor immunity using adenovirus gene delivery in an aggressive and nonimmunogenic BALB/c syngeneic 4T1 breast cancer model.

View Article and Find Full Text PDF

We recently published the construction and evaluation of a beta-catenin-dependent, highly active promoter, CTP1, and its possible application for the treatment of colorectal cancer using gene-directed enzyme prodrug therapy with adenoviral (Ad) vectors. Alternative Ad-based approaches such as tumor-specific, replication-competent vectors and/or exploiting therapeutic gene products with intrinsic toxic activity, such as gibbon ape leukemia virus fusogenic membrane glycoprotein, diphtheria toxin A (DTA), and ricin, would demand a very tightly regulated promoter to avoid breakthrough replication and toxicity in nontumor tissue and Ad producer cell lines. In this study we optimized the activity/specificity profile of the synthetic beta-catenin-dependent promoter by varying its basal promoter, the number of Tcf binding sites, and the distance between these and the basal promoter.

View Article and Find Full Text PDF