Context: Ma Xing Shi Gan Decoction (MXSGD) is a traditional remedy for treating lung injuries that was developed by the Typhoid and Fever School of Pharmaceutical Biology. It has antitussive and expectorant effects, anti-inflammatory, antiviral, regulates the body's immunity, etc.
Aim: The aim of this study is to investigate whether MXSGD can ameliorate cyclosporine A (CsA)-induced hypoimmunity lung injury by regulating microflora metabolism.
Pachymaran (PCP), the major medicinal constituent of Poria cocos, has a regulatory effect on immunosuppressive lung injury, but its mechanism of action with respect to gut microorganisms and their metabolites is not clear. The aim of this study was to investigate the protective effect of PCP against immunosuppressive lung injury caused by cyclosporine A (CsA), and to reveal its possible mechanism of action via the comprehensive analysis of 16S rRNA and LC-MS. We demonstrated that PCP was effective at alleviating CsA-induced immunosuppressive lung injury by restoring the organ indices and lung tissue morphology and structure.
View Article and Find Full Text PDFBased on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed.
View Article and Find Full Text PDFGenes Genomics
December 2022
Background: Myocarditis is a myocardial injury that can easily cause adolescent death. Traditional research models of animal invasion with viral components, lipopolysaccharide (LPS) or porcine myocardial myosin, among others, have the shortcomings of potential biological safety hazards and high animal mortality.
Objective: To explore the construction of a novel myocarditis model with cyclosporine A and the potential genes and pathways associated with it.
Oxidative stress has been considered as one of pathogenesis of brain damage led by epilepsy. Reducing oxidative stress can ameliorate brain damage during seizures. However, expression levels of important antioxidative enzymes such as thioredoxin-1 (TRX1), thioredoxin-like 1 protein (TXNL1) and thioredoxin reductase 1 (TXNRD1) during seizures have not been investigated.
View Article and Find Full Text PDF