Publications by authors named "Kai P Law"

Intrahepatic cholestasis of pregnancy (ICP) is associated with an increased risk of cesarean section and adverse fetal outcomes. Currently, ICP diagnosis depends largely on serum levels of bile acids and lacks sensitivity and specificity for accurate diagnosis. Tongue diagnosis is an important diagnostic tool in traditional Chinese medicine (TCM) and is used in our clinic as complementary treatment and personalized medicine for ICP.

View Article and Find Full Text PDF

Archaea are differentiated from the other two domains of life by their biomolecular characteristics. One such characteristic is the unique structure and composition of their lipids. Characterization of the whole set of lipids in a biological system (the lipidome) remains technologically challenging.

View Article and Find Full Text PDF

Marine (formerly known as the marine group I archaea) have received much research interest in recent years since these chemolithoautotrophic organisms are abundant in the subsurface ocean and oxidize ammonium to nitrite, which makes them a major contributor to the marine carbon and nitrogen cycles. However, few studies have investigated the chemical composition of their exometabolome and their contributions to the pool of dissolved organic matter (DOM) in seawater. This study exploits the recent advances in ion mobility mass spectrometry (IM-MS) and integrates this instrumental capability with bioinformatics to reassess the exometabolome of a model ammonia-oxidizing archaeon, strain SCM1.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a form of diabetes that is first diagnosed during pregnancy in the absence of existing type 1 or type 2 diabetes. Early screening tools for GDM are currently unavailable, but metabolomics is a promising approach for detecting biomarkers of GDM. This review evaluates recent GDM studies employing metabolomic techniques, highlighting the challenges in those studies and envisions the future directions for metabolomic study of GDM.

View Article and Find Full Text PDF

A challenge of metabolomics is data processing the enormous amount of information generated by sophisticated analytical techniques. The raw data of an untargeted metabolomic experiment are composited with unwanted biological and technical variations that confound the biological variations of interest. The art of data normalisation to offset these variations and/or eliminate experimental or biological biases has made significant progress recently.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus (GDM) is a pathological state of glucose intolerance associated with adverse pregnancy outcomes and an increased risk of developing maternal type 2 diabetes later in life. The mechanisms underlying GDM development are not fully understood. We examined the pathophysiology of GDM through comprehensive metabolic profiling of maternal urine, using participants from a longitudinal cohort of normal pregnancies and pregnancies complicated by GDM.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a form of diabetes that is first recognised during pregnancy, with no evidence of pre-existing type 1 or type 2 diabetes. The prevalence of GDM has been rising steadily over the past few decades, coinciding with the ongoing epidemic of obesity and type 2 diabetes. Although GDM normally disappears after delivery, women who have been previously diagnosed with GDM are at a greater risk of developing gestational diabetes in subsequent pregnancies, and type 2 diabetes later in life.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus (GDM) is a milder degree of hyperglycaemia diagnosed during pregnancy that can lead to serious, long-term consequences for both mother and foetus. The pathophysiology of GDM is not fully understood. The number of pregnant women diagnosed with GDM has been steadily increasing, but effective screening tools for early risk stratification are still missing.

View Article and Find Full Text PDF

Pterygium is a triangular shaped ocular fibrous surface lesion growing from conjunctiva towards central cornea, causing ocular irritation, astigmatism, and visual disturbance. The condition is characterized by epithelial proliferation, fibrovascular growth, chronic inflammation, and prominent extracellular matrix remodeling. Studies have suggested that aberrant extracellular proteins secreted by fibroblasts lead to abnormal matrix production and tissue invasion contributing to the development of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • Ubiquitin modification plays a crucial role in regulating the TGF-β signaling pathway through mechanisms involving feedback loops and degradation processes.
  • The E3 ligase SMURF2 tags the TGF-β receptor complex for degradation, while recent findings have identified special enzymes called deubiquitinating enzymes (DUBs) that can stabilize this receptor.
  • The study highlights USP15 as a key DUB that not only stabilizes the TGF-β receptor by deubiquitinating it but also enhances TGF-β signaling by modifying SMURF2, indicating a complex interplay between these proteins in the regulation of TGF-β pathways.
View Article and Find Full Text PDF

Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity.

View Article and Find Full Text PDF

Purpose: Pterygium is a wing shaped fibrovascular growth on the ocular surface, characterized by fibrosis, angiogenesis, extracellular matrix remodeling, and inflammatory infiltrates. Epidemiologic studies have linked pterygium formation to various chronic inflammatory conditions, such as ultraviolet radiation, sawdust exposure, and dry eye disease. The purpose of this study is to identify proteins that are differentially expressed in primary pterygium by using a combination of gene microarray and proteomic platforms.

View Article and Find Full Text PDF

New mass spectrometry (MS) methods, collectively known as data independent analysis and hyper reaction monitoring, have recently emerged. These methods hold promises to address the shortcomings of data-dependent analysis and selected reaction monitoring (SRM) employed in shotgun and targeted proteomics, respectively. They allow MS analyses of all species in a complex sample indiscriminately, or permit SRM-like experiments conducted with full high-resolution product ion spectra, potentially leading to higher sequence coverage or analytical selectivity.

View Article and Find Full Text PDF