Publications by authors named "Kai Moshammer"

Biomass is a key element in biofuels which can be defined as a fuel produced through contemporary biological processes, and its increased use can support the EU's aims of reducing greenhouse gas emissions. Information on the nature and the quality of the biomass or biofuel is important in order to support the optimization of their combustion with respect to realizing higher efficiencies and lower emissions during energy production. Three reference materials were produced by a collaborative approach among national metrology institutes and designated institutes within the scope of the EMPIR project: BIOFMET.

View Article and Find Full Text PDF

The low reactivity of ammonia (NH) is the main barrier to applying neat NH as fuel in technical applications, such as internal combustion engines and gas turbines. Introducing combustion promoters as additives in NH-based fuel can be a feasible solution. In this work, the oxidation of ammonia by adding different reactivity promoters, i.

View Article and Find Full Text PDF

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments.

View Article and Find Full Text PDF

Keto-hydroperoxides (KHPs) are reactive, partially oxidized intermediates that play a central role in chain-branching reactions during the gas-phase low-temperature oxidation of hydrocarbons and oxygenated species. Although multiple isomeric forms of the KHP intermediate are possible in complex oxidation environments when multiple reactant radicals exist that contain nonequivalent O addition sites, isomer-resolved data of KHPs have not been reported. In this work, we provide partially isomer-resolved detection and quantification of the KHPs that form during the low-temperature oxidation of tetrahydrofuran (THF, -O-CHCHCHCH-).

View Article and Find Full Text PDF

In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane < 1-pentene < 2M2B.

View Article and Find Full Text PDF

Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g.

View Article and Find Full Text PDF

This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J.

View Article and Find Full Text PDF

In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid).

View Article and Find Full Text PDF

Complex reactive processes in the gas phase often proceed via numerous reaction steps and intermediate species that must be identified and quantified to develop an understanding of the reaction pathways and establish suitable reaction mechanisms. Here, photoelectron-photoion coincidence (PEPICO) spectroscopy has been applied to analyse combustion intermediates present in a premixed fuel-rich (ϕ = 1.7) ethene-oxygen flame diluted with 25% argon, burning at a reduced pressure of 40 mbar.

View Article and Find Full Text PDF