Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the BCR-ABL1 tyrosine kinase. Although ABL1-specific tyrosine kinase inhibitors (TKIs) including nilotinib have dramatically improved the prognosis of patients with CML, the TKI efficacy depends on the individual patient. In this work, we found that the patients with different nilotinib responses can be classified by using the estimated parameters of our simple dynamical model with two common laboratory findings.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
January 2023
Spiking neural networks (SNNs) are brain-inspired mathematical models with the ability to process information in the form of spikes. SNNs are expected to provide not only new machine-learning algorithms but also energy-efficient computational models when implemented in very-large-scale integration (VLSI) circuits. In this article, we propose a novel supervised learning algorithm for SNNs based on temporal coding.
View Article and Find Full Text PDFReservoir computing (RC) is a machine learning algorithm that can learn complex time series from data very rapidly based on the use of high-dimensional dynamical systems, such as random networks of neurons, called "reservoirs." To implement RC in edge computing, it is highly important to reduce the amount of computational resources that RC requires. In this study, we propose methods that reduce the size of the reservoir by inputting the past or drifting states of the reservoir to the output layer at the current time step.
View Article and Find Full Text PDFUsing a dataset of 150 patients treated with intermittent androgen suppression (IAS) through a fixed treatment schedule, we retrospectively designed a personalized treatment schedule mathematically for each patient. We estimated 100 sets of parameter values for each patient by randomly resampling each patient's time points to take into account the uncertainty for observations of prostate specific antigen (PSA). Then, we identified 3 types and classified patients accordingly: in type (i), the relapse, namely the divergence of PSA, can be prevented by IAS; in type (ii), the relapse can be delayed by IAS later than by continuous androgen suppression (CAS); in type (iii) IAS was not beneficial and therefore CAS would have been more appropriate in the long run.
View Article and Find Full Text PDFWhen a physician decides on a treatment and its schedule for a specific patient, information gained from prior patients and experience in the past is taken into account. A more objective way to make such treatment decisions based on actual data would be useful to the clinician. Although there are many mathematical models proposed for various diseases, so far there is no mathematical method that accomplishes optimization of the treatment schedule using the information gained from past patients or "rapid learning" technology.
View Article and Find Full Text PDFWell-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history.
View Article and Find Full Text PDFUnderstanding network robustness against failures of network units is useful for preventing large-scale breakdowns and damages in real-world networked systems. The tolerance of networked systems whose functions are maintained by collective dynamical behavior of the network units has recently been analyzed in the framework called dynamical robustness of complex networks. The effect of network structure on the dynamical robustness has been examined with various types of network topology, but the role of network assortativity, or degree-degree correlations, is still unclear.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2014
We study tolerance of dynamic behavior in networks of coupled heterogeneous oscillators to deterioration of the individual oscillator components. As the deterioration proceeds with reduction in dynamic behavior of the oscillators, an order parameter evaluating the level of global oscillation decreases and then vanishes at a certain critical point. We present a method to analytically derive a general formula for this critical point and an approximate formula for the order parameter in the vicinity of the critical point in networks of coupled Stuart-Landau oscillators.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2013
We study an effective method to recover dynamic activity in coupled oscillator networks that have been damaged and lost oscillatory dynamics owing to some inactivated or deteriorated oscillator elements. Recovery of the dynamic behavior can be achieved by newly connecting intact oscillators to the network. We analytically and numerically examine the proportion of the oscillators that are needed to be supported by intact oscillators for recovery of oscillation dynamics.
View Article and Find Full Text PDFMany social, biological, and technological networks consist of a small number of highly connected components (hubs) and a very large number of loosely connected components (low-degree nodes). It has been commonly recognized that such heterogeneously connected networks are extremely vulnerable to the failure of hubs in terms of structural robustness of complex networks. However, little is known about dynamical robustness, which refers to the ability of a network to maintain its dynamical activity against local perturbations.
View Article and Find Full Text PDFWe consider the robustness of multilayer networks composed of active and inactive oscillators from the viewpoint of interlayer coupling effects through the aging transition [H. Daido and K. Nakanishi, Phys.
View Article and Find Full Text PDF