Publications by authors named "Kai Miller"

Stereotactic systems have traditionally used Cartesian coordinate combined with linear algebraic mathematical models to navigate the brain. Previously, the development of a novel stereotactic system allowed for improved patient comfort, reduced size, and carried through a simplified interface for surgeons. The system was designed with a work envelope and trajectory range optimized for deep brain stimulation applications only.

View Article and Find Full Text PDF

In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects.

View Article and Find Full Text PDF

This study presents a new data acquisition Framework for synchronous dual Brain Interchange (BIC) systems recording. The setup expands the capacity for data recording by offering access to up to 64 channels. The environment utilizes our Simulink model, incorporating functionalities for synchronization using a master clock and email-based status updates.

View Article and Find Full Text PDF

Background And Objectives: Stereotactic procedures are used to manage a diverse set of patients across a variety of clinical contexts. The stereotactic devices and software used in these procedures vary between surgeons, but the fundamental principles that constitute safe and accurate execution do not. The aim of this work is to describe these principles to equip readers with a generalizable knowledge base to execute and understand stereotactic procedures.

View Article and Find Full Text PDF

Background And Objectives: Identifying and characterizing sources of targeting error in stereotactic procedures is essential to maximizing accuracy, potentially improving surgical outcomes. We aim to describe a generic framework which characterizes sources of stereotactic inaccuracy.

Methods: We assembled a list of stereotactic systems: ROSA, Neuromate, Mazor Renaissance, ExcelsiusGPS, Cirq, STarFix (FHC), Nexframe, ClearPoint, CRW, and Leksell.

View Article and Find Full Text PDF

Electrocorticographic (ECoG) signals provide high-fidelity representations of sensorimotor cortex activation during contralateral hand movements. Understanding the relationship between independent and coordinated finger movements along with their corresponding ECoG signals is crucial for precise brain mapping and neural prosthetic development. We analyzed subdural ECoG signals from three adult epilepsy patients with subdural electrode arrays implanted for seizure foci identification.

View Article and Find Full Text PDF

The motor thalamus plays a crucial role in integrating and modulating sensorimotor information. Although voltage power spectral changes in the motor cortex with movement are well-characterized, corresponding activity in the motor thalamus, particularly broadband power change, remains unclear. The present study aims to characterize spectral changes in the motor thalamus during hand movements of 15 subjects undergoing awake deep brain stimulation surgery targeting the ventral intermediate (Vim) nucleus of the thalamus for disabling tremor.

View Article and Find Full Text PDF

Background: While high-frequency oscillations (HFOs) and their stereotyped clusters (sHFOs) have emerged as potential neuro-biomarkers for the rapid localization of the seizure onset zone (SOZ) in epilepsy, their clinical application is hindered by the challenge of automated elimination of pseudo-HFOs originating from artifacts in heavily corrupted intraoperative neural recordings. This limitation has led to a reliance on semi-automated detectors, coupled with manual visual artifact rejection, impeding the translation of findings into clinical practice.

Methods: In response, we have developed a computational framework that integrates sparse signal processing and ensemble learning to automatically detect genuine HFOs of intracranial EEG data.

View Article and Find Full Text PDF

Single pulse electrical stimulation experiments produce pulse-evoked potentials used to infer brain connectivity. The choice of recording reference for intracranial electrodes remains non-standardized and can significantly impact data interpretation. When the reference electrode is affected by stimulation or evoked brain activity, it can contaminate the pulse-evoked potentials recorded at all other electrodes and influence interpretation of findings.

View Article and Find Full Text PDF

Stereotactic frameless needle brain biopsy is a common neurosurgical procedure performed via twist drill or open burr hole approaches. We aim to compare diagnostic yields and surgical outcomes to delineate the safety and efficacy of both approaches. A retrospective database of all stereotactic needle biopsy procedures performed at a single institution over 30 months was conglomerated.

View Article and Find Full Text PDF

Background And Objectives: Corpus callosotomy is an effective procedure approach for treating medication-resistant drop seizures, which pose a significant challenge in patients with epilepsy. Laser interstitial thermal therapy offers an alternative to open surgery for performing corpus callosotomy that may limit approach-related comorbidities. Practices vary regarding the number of laser filaments used and staging; outcome data for pediatric patients remain relatively limited.

View Article and Find Full Text PDF

Nucleus accumbens (NAc) deep brain stimulation (DBS) has been increasingly explored as a treatment modality for refractory neuropsychiatric disorders. Uncovering the accumbens network that is engaged by DBS is a critical step forward in understanding how modulating this important node impacts the broader mesocorticolimbic circuit. Using whole-brain clearing and unbiased, brain-wide neural activity mapping, we found that NAc DBS increases neural activity in a coordinated mesocorticolimbic network in mice.

View Article and Find Full Text PDF
Article Synopsis
  • There are limited options for treating drug-resistant idiopathic generalized epilepsy (IGE), but centromedian thalamus deep brain stimulation (CM-DBS) shows promise based on small case studies.
  • A retrospective analysis of five patients indicated significant reductions in seizure frequency, with median convulsive seizure reduction at 66% and over 99% for absence seizures in one case.
  • The study highlights the importance of accurately targeting the middle ventral CM nucleus for optimal outcomes, as better results were linked to strong connectivity between this area and the central peri-Rolandic cortex.
View Article and Find Full Text PDF

. Advancements in data science and assistive technologies have made invasive brain-computer interfaces (iBCIs) increasingly viable for enhancing the quality of life in physically disabled individuals. Intracortical microelectrode implants are a common choice for such a communication system due to their fine temporal and spatial resolution.

View Article and Find Full Text PDF

Objective: Stereoelectroencephalography (SEEG) has become the predominant method for intracranial seizure localization. When imaging, semiology, and scalp EEG findings are not in full agreement or definitively localizing, implanted SEEG recordings are used to test candidate seizure onset zones (SOZs). Discovered SOZs may then be targeted for resection, laser ablation, or neurostimulation.

View Article and Find Full Text PDF

The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep.

View Article and Find Full Text PDF

Introduction: Stereoelectroencephalography (sEEG) is a mesoscale intracranial monitoring method which records from the brain volumetrically with depth electrodes. Implementation of sEEG in BCI has not been well-described across a diverse patient cohort.

Methods: Across eighteen subjects, channels with high frequency broadband (HFB, 65-115Hz) power increases during hand, tongue, or foot movements during a motor screening task were provided real-time feedback based on these HFB power changes to control a cursor on a screen.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates whether brain interactions in the cortex enhance communication by creating synergistic information, meaning that combined brain signals convey more useful information than individual signals alone.
  • Researchers focused on how different brain regions process prediction error (PE) using electrocorticography (ECoG) in awake marmosets during auditory tasks, analyzing both event-related potentials (ERPs) and broadband dynamics.
  • Findings showed that synergy was present even in early auditory processing stages, highlighting that effective synergy between auditory and frontal regions depends on strong connections, suggesting complex communication patterns in the cortex.
View Article and Find Full Text PDF

Human brain connectivity can be mapped by single pulse electrical stimulation during intracranial EEG measurements. The raw cortico-cortical evoked potentials (CCEP) are often contaminated by noise. Common average referencing (CAR) removes common noise and preserves response shapes but can introduce bias from responsive channels.

View Article and Find Full Text PDF

Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries.

View Article and Find Full Text PDF

Brain mapping is vital in understanding the brain's functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures.

View Article and Find Full Text PDF

Introduction: Stereoelectroencephalography (sEEG) has become the predominant method for intracranial seizure localization. When imaging, semiology, and scalp EEG are not in full agreement or definitively localizing, implanted sEEG recordings are used to test candidate seizure onset zones (SOZs). Discovered SOZs may then be targeted for resection, laser ablation, or neurostimulation.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is a viable treatment for a variety of neurological conditions, however, the mechanisms through which DBS modulates large-scale brain networks are unresolved. Clinical effects of DBS are observed over multiple timescales. In some conditions, such as Parkinson's disease and essential tremor, clinical improvement is observed within seconds.

View Article and Find Full Text PDF

Objective: Conventional frame-based stereotactic systems have circumferential base frames, often necessitating deep brain stimulation (DBS) surgery in two stages: intracranial electrode insertion followed by surgical re-preparation and pulse generator implantation. Some patients do not tolerate awake surgery, underscoring the need for a safe alternative for asleep DBS surgery. A frame-based stereotactic system with a skull-mounted "key" in lieu of a circumferential base frame received US FDA clearance.

View Article and Find Full Text PDF