There is tremendous growing interest in utilizing biomass molecules for energy provision due to their carbon neutrality. Here, we employ ethylene glycol as a model compound for catalytic activation, which represents a basic unit for complex carbohydrate molecules (polyols). In this paper, hydrogenolysis of ethylene glycol to produce methanol in hydrogen over modified RANEY® Ni and Cu catalysts has been studied.
View Article and Find Full Text PDFA non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm).
View Article and Find Full Text PDFMethanol is an important platform molecule for chemical synthesis and its high energy density also renders it a good candidate as a cleaner transportation fuel. At present, methanol is manufactured from natural gas via the indirect syn-gas route. Here we show that ethylene glycol, a versatile chemical derived from biomass or fossil fuels, can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe(2)O(3) co-precipitated catalyst.
View Article and Find Full Text PDFWe report a novel preparation of a Pd nanocatalyst modified with subsurface C via blending a glucose precursor at the molecular level: the catalyst is demonstrated for the first time to be stereoselective in the hydrogenation of alkynes to cis-alkenes in the liquid phase.
View Article and Find Full Text PDFFormic acid (HCOOH) has great potential as an in situ source of hydrogen for fuel cells, because it offers high energy density, is non-toxic and can be safely handled in aqueous solution. So far, there has been a lack of solid catalysts that are sufficiently active and/or selective for hydrogen production from formic acid at room temperature. Here, we report that Ag nanoparticles coated with a thin layer of Pd atoms can significantly enhance the production of H₂ from formic acid at ambient temperature.
View Article and Find Full Text PDFEnergy and the environment are two of the most important issues this century. More than 80 % of our energy comes from the combustion of fossil fuels, which will still remain the dominant energy source for years to come. It is agreed that carbon dioxide produced from the combustion process to be the most important anthropogenic greenhouse gas leading to global warming.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2006
Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions.
View Article and Find Full Text PDF