It is reported that catalytic hydrogenation of cinnamaldehyde to cinnamyl alcohol is a structural sensitive reaction dependent on size and type of metal doper of unsupported platinum nanocrystals used. Smaller sizes of platinum nanocrystals are found to give lower selectivity to cinnamyl alcohol, which suggests the high index Pt sites are undesirable for the terminal aldehyde hydrogenation. A plot of reaction selectivity across the first row of transition metals as dopers gives a typical volcano shape curve, the apex of which depicts that a small level of cobalt on platinum nanocrystals can greatly promote the reaction selectivity.
View Article and Find Full Text PDFConventional supported metal catalysts are metal nanoparticles deposited on high surface area oxide supports with a poorly defined metal-support interface. Typically, the traditionally prepared Pt/ceria catalyzes both methanation (H2/CO to CH4) and water-gas shift (CO/H2O to CO2/H2) reactions. By using simple nanochemistry techniques, we show for the first time that Pt or PtAu metal can be created inside each CeO2 particle with tailored dimensions.
View Article and Find Full Text PDFA new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity.
View Article and Find Full Text PDF