Expansion microscopy (ExM) is a recently developed technique that allows for the resolution of structures below the diffraction limit by physically enlarging a hydrogel-embedded facsimile of the biological sample. The target structure is labeled and this label must be retained in a relative position true to the original, smaller state before expansion by linking it into the gel. However, gel formation and digestion lead to a significant loss in target-delivered label, resulting in weak signal.
View Article and Find Full Text PDFG protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced.
View Article and Find Full Text PDFLanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from low-cost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF:Yb, Er UCNPs via thermal decomposition.
View Article and Find Full Text PDFConjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys.
View Article and Find Full Text PDFSignificance: Fluorescence imaging of rheumatoid diseases with indocyanine green (ICG) is an emerging technique with unique potential for diagnosis and therapy. Device characterization, monitoring of the performance, and further developments of the technique require tissue-equivalent fluorescent phantoms of high stability with appropriate anatomical shapes.
Aim: Our investigations aim at the development of a three-dimensional (3D) printing technique to fabricate hand and finger models with appropriate optical properties in the near-infrared spectral range.
Polymer conjugation to biologics is of key interest to the pharmaceutical industry for the development of potent and long acting biotherapeutics, with poly(ethylene glycol) (PEG) being the gold standard. Within the last years, unwanted PEG-related side effects (immunological reactions, antibody formation) arose, therefore creating several attempts to establish alternative polymers with similar potential to PEG. In this article, we synthesized N-terminal bioconjugates of the potential therapeutic human interleukin-4 (hIL-4 WT) with linear polyglycerol (LPG) of 10 and 40 kDa and compared it with its PEG analogs of same nominal weights.
View Article and Find Full Text PDFConjugation of biologics with polymers modulates their pharmacokinetics, with polyethylene glycol (PEG) as the gold standard. We compared alternative polymers and two types of cyclooctyne linkers (BCN/DBCO) for bioconjugation of interferon-α2a (IFN-α2a) using 10 kDa polymers including linear mPEG, poly(2-ethyl-2-oxazoline) (PEtOx), and linear polyglycerol (LPG). IFN-α2a was azide functionalized via amber codon expansion and bioorthogonally conjugated to all cyclooctyne linked polymers.
View Article and Find Full Text PDFExenatide is a small therapeutic peptide being currently used in clinic for the treatment of diabetes mellitus type II, however, displaying a short blood circulation time which makes two daily injections necessary. Covalent polymer modification of a protein is a well-known approach to overcome this limitation, resulting in steric shielding, an increased size and therefore a longer circulation half-life. In this study, we employed site-selective C-terminal polymer ligation of exenatide via copper-catalyzed azide-alkyne-cycloaddition (CuAAC) to yield 1:1-conjugates of either poly(ethylene glycol) (PEG) or linear polyglycerol (LPG) of different molecular weights.
View Article and Find Full Text PDFSince several decades, PEGylation is known to be the clinical standard to enhance pharmacokinetics of biotherapeutics. In this study, we introduce polyglycerol (PG) of different lengths and architectures (linear and hyperbranched) as an alternative polymer platform to poly(ethylene glycol) (PEG) for half-life extension (HLE). We designed site-selective N-terminally modified PG-protein conjugates of the therapeutic protein anakinra (IL-1ra, Kineret) and compared them systematically with PEG analogues of similar molecular weights.
View Article and Find Full Text PDFMultimodal imaging probes have attracted the interest of ongoing research, for example, for the surgical removal of tumors. Modular synthesis approaches allow the construction of hybrid probes consisting of a radiotracer, a fluorophore and a targeting unit. We present the synthesis of a new asymmetric bifunctional cyanine dye that can be used as a structural and functional linker for the construction of such hybrid probes.
View Article and Find Full Text PDFThis study identified and confirmed angiotensin II (ATII) as a strong activator of signaling in neuroendocrine neoplasm (NEN) cells. Expression analyses of the ATII receptor type 1 (AGTR1) revealed an upregulation of mRNA levels (RT-qPCR) and radioligand binding (autoradiography) in small-intestinal ( = 71) NEN tissues compared to controls ( = 25). NEN cells with high AGTR1 expression exhibited concentration-dependent calcium mobilization and chromogranin A secretion upon stimulation with ATII, blocked by AGTR1 antagonism and Gαq inhibition.
View Article and Find Full Text PDFBiological membrane fluidity and thus the local viscosity in lipid membranes are of vital importance for many life processes and implicated in various diseases. Here, we introduce a novel viscosity sensor design for lipid membranes based on a reporting nanoparticle, a sulfated dendritic polyglycerol (dPGS), conjugated to a fluorescent molecular rotor, indocarbocyanine (ICC). We show that dPGS-ICC provides high affinity to lipid bilayers, enabling viscosity sensing in the lipid tail region.
View Article and Find Full Text PDFDendritic polyglycerol sulfate (dPGS) has originally been investigated as an anticoagulant to potentially substitute for the natural glycosaminoglycan heparin. Compared to unfractionated heparin, dPGS possesses lower anticoagulant activity but a much higher anticomplementary effect. Since coagulation, complement activation, and inflammation are often present in the pathophysiology of numerous diseases, dPGS polymers with both anticoagulant and anticomplementary activities represent promising candidates for the development of polymeric drugs of nanosized architecture.
View Article and Find Full Text PDFStimuli-responsive polymer-drug conjugates (PDCs) provide promising approaches in anticancer treatment. Here, we report the synthesis and biological evaluation of PDCs made of the highly potent antimitotic agent monomethyl auristatin E conjugated to dendritic polyglycerol and dendritic polyglycerol sulfate via a reductively cleavable, self-immolative disulfide linker. Cell viability assays with the human cancer cell lines A549 (lung carcinoma) and HeLa (cervix carcinoma) revealed that the drug's cytotoxicity was reduced by conjugation to the polymers, with the sulfated conjugates being more effective than the non-sulfated ones.
View Article and Find Full Text PDFGlioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier.
View Article and Find Full Text PDFThe destruction of articular cartilage is a critical feature in joint diseases. An approach to selectively target the damaged tissue is promising for the development of diagnostic and therapeutic agents. We herein present the interaction of dendritic polyglycerol (dPG) anions with native and inflamed cartilage.
View Article and Find Full Text PDFHerein, we present a new synthetic route to cyanine-based heterobifunctional dyes and their application as fluorescent linkers between polymers and biomolecules. The synthesized compounds, designed in the visible spectral range, are equipped with two different reactive groups for highly selective conjugation under physiological conditions. By applying indolenine precursors with functionalized benzenes, we achieved water-soluble asymmetric cyanine dyes bearing maleimido and -hydroxysuccinimidyl functionalities in a three-step synthesis.
View Article and Find Full Text PDFIn the present study, a pH responsive dendritic polyglycerol nanogel (dPG-NG) is developed to measure the pH values inside the hair follicle (HF) using an ex vivo porcine ear model. The macromolecular precursors are labeled with a pH sensitive indodicarbocyanine dye (pH-IDCC) and a control dye (indocarbocyanine dye: ICC) and crosslinked via a mild and surfactant-free Thiol-Michael reaction using an inverse nanoprecipitation method. With this method, it is possible to prepare tailor-made particles in the range of 100 nm to 1 µm with a narrow polydispersity.
View Article and Find Full Text PDFDue to their unique structure and properties, water-soluble fullerene derivatives are of great interest for various biomedical purposes. In this work, solution behavior, encapsulation and release properties, biocompatibility, and cellular uptake pathways of fullerene-polyglycerol amphiphiles (FPAs) with defined structures are investigated. The number of polyglycerol branches attached to the surface of fullerene affects the physicochemical properties of FPAs dramatically but not their cellular uptake.
View Article and Find Full Text PDFThe demand for responsive dyes in optical imaging is high to achieve a better signal-to-noise ratio and, more specifically, to visualize acidic compartments of the endocytic pathway. Herein, we present a new synthetic route, with a step-by-step synthesis of water-soluble pH-sensitive cyanine dyes exhibiting p values in the region of physiological pH, as confirmed by absorption and fluorescence spectra. Moreover, modification of p values was achieved by two different substitution patterns, creating tunable pH-sensitive dyes.
View Article and Find Full Text PDFNear-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status.
View Article and Find Full Text PDFPurpose: Anti-VEGF therapy has improved functional outcome for many patients with neovascular AMD. A particular challenge in routine clinical application is to find the best treatment regimen as a high degree of interindividual variability of disease activity has been noted. The aim of the study was to investigate fluorescent probes linked to antibodies against VEGF for in vivo imaging in an animal model.
View Article and Find Full Text PDFInteractions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes.
View Article and Find Full Text PDFBackground: Anti-inflammatory nanoparticular compounds could represent a strategy to diminish osteoarthritis (OA) progression. The present study was undertaken to prove the uptake of nanoparticular dendritic polyglycerol sulfates (dPGS) by rat-derived articular chondrocytes and to answer the question of whether dPGS could modulate knee joint cartilage degradation in a rat OA model and whether complications could arise.
Methods: dPGS uptake and cytotoxicity was assessed in cultured primary rat-derived articular chondrocytes.
Graft-versus-host disease (GvHD) is a severe immune reaction commonly occurring after hematopoietic stem cell transplantation. The outcome of patients who do not respond to the currently used immunosuppressive drugs is poor, thus there is an urgent need for the evaluation of new therapies. Heparin has a well-known anti-inflammatory effect and heparin analogues with a low anticoagulant effect are interesting candidates as new anti-inflammatory drugs.
View Article and Find Full Text PDF