Publications by authors named "Kai Leong Chong"

For dissolving active oil droplets in an ambient liquid, it is generally assumed that the Marangoni effect results in repulsive interactions, while the buoyancy effects caused by the density difference between the droplets, diffusing product and the ambient fluid are usually neglected. However, it has been observed in recent experiments that active droplets can form clusters due to buoyancy-driven convection (Krüger , vol. 39, 2016, pp.

View Article and Find Full Text PDF

Precise manipulation of droplets or bubbles hosts a broad range of applications for microfluidic devices, drug delivery, and soft robotics. Generally the existing approaches via passively designing structured surfaces or actively applying external stimuli, inherently confine their motions within the planar or curved geometry at a slow speed. Consequently the realization of 3D manipulation, such as of the underwater bubbles, remains challenging.

View Article and Find Full Text PDF

We numerically study turbulent Rayleigh-Bénard (RB) convection under spatial temperature modulation, where the bottom temperature varies sinusoidally around a mean value in space. Both two- and three-dimensional simulations are performed over the Rayleigh number range 10^{7}≤Ra≤10^{10} and the wave number range 1≤k≤120 at fixed Prandtl number Pr=0.7.

View Article and Find Full Text PDF

When a fluid system is subject to strong rotation, centrifugal fluid motion is expected, i.e., denser (lighter) fluid moves outward (inward) from (toward) the axis of rotation.

View Article and Find Full Text PDF

Plasmonic bubbles are of great relevance in numerous applications, including catalytic reactions, micro/nanomanipulation of molecules or particles dispersed in liquids, and cancer therapeutics. So far, studies have been focused on bubble nucleation in pure liquids. Here we investigate plasmonic bubble nucleation in ternary liquids consisting of ethanol, water, and trans-anethole oil, which can show the so-called ouzo effect.

View Article and Find Full Text PDF

The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz.

View Article and Find Full Text PDF

To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10  μm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2 m advection range of the respiratory droplets within 1 sec.

View Article and Find Full Text PDF

Many natural and industrial turbulent flows are subjected to time-dependent boundary conditions. Despite being ubiquitous, the influence of temporal modulations (with frequency f) on global transport properties has hardly been studied. Here, we perform numerical simulations of Rayleigh-Bénard convection with time periodic modulation in the temperature boundary condition and report how this modulation can lead to a significant heat flux (Nusselt number Nu) enhancement.

View Article and Find Full Text PDF

Brownian motion of particles in fluid is the most common form of collective behavior in physical and biological systems. Here, we demonstrate through both experiment and numerical simulation that the movement of vortices in a rotating turbulent convective flow resembles that of inertial Brownian particles, i.e.

View Article and Find Full Text PDF

Droplets can self-propel when immersed in another liquid in which a concentration gradient is present. Here we report the experimental and numerical study of a self-propelling oil droplet in a vertically stratified ethanol-water mixture: At first, the droplet sinks slowly due to gravity, but then, before having reached its density matched position, jumps up suddenly. More remarkably, the droplet bounces repeatedly with an ever increasing jumping distance, until all of a sudden it stops after about 30 min.

View Article and Find Full Text PDF

Many natural and engineering systems are simultaneously subjected to a driving force and a stabilizing force. The interplay between the two forces, especially for highly nonlinear systems such as fluid flow, often results in surprising features. Here we reveal such features in three different types of Rayleigh-Bénard (RB) convection, i.

View Article and Find Full Text PDF

Coherent structures are ubiquitous in turbulent flows and play a key role in transport. The most important coherent structures in thermal turbulence are plumes. Despite being the primary heat carriers, the potential of manipulating thermal plumes to transport more heat has been overlooked so far.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3f665hjm6u5m8b31f30m5o1s28al0vf3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once