Publications by authors named "Kai Lawonn"

In vitro vascular models, primarily made of silicone, have been utilized for decades for studying hemodynamics and supporting the development of implants for catheter-based treatments of diseases such as stenoses and aneurysms. Hydrogels have emerged as prominent materials in tissue-engineering applications, offering distinct advantages over silicone models for fabricating vascular models owing to their viscoelasticity, low friction, and tunable mechanical properties. Our study evaluated the feasibility of fabricating thin-wall, anatomical vessel models made of polyvinyl alcohol hydrogel (PVA-H) based on a patient-specific carotid artery bifurcation using a combination of 3D printing and molding technologies.

View Article and Find Full Text PDF

Line attributes such as width and dashing are commonly used to encode information. However, many questions on the perception of line attributes remain, such as how many levels of attribute variation can be distinguished or which line attributes are the preferred choices for which tasks. We conducted three studies to develop guidelines for using stylized lines to encode scalar data.

View Article and Find Full Text PDF

Illustrative textures, such as stippling or hatching, were predominantly used as an alternative to conventional Phong rendering. Recently, the potential of encoding information on surfaces or maps using different densities has also been recognized. This has the significant advantage that additional color can be used as another visual channel and the illustrative textures can then be overlaid.

View Article and Find Full Text PDF

In this numerical study, areas of the carotid bifurcation and of a distal stenosis in the internal carotid artery are closely observed to evaluate the patient's current risks of ischemic stroke. An indicator for the vessel wall defects is the stress exerted by blood on the vessel tissue, typically expressed by the amplitude of the wall shear stress vector (WSS) and its oscillatory shear index. To detect negative shear stresses corresponding with reversal flow, we perform orientation-based shear evaluation.

View Article and Find Full Text PDF

Background: Fast and accurate diagnostics are key for personalised medicine. Particularly in cancer, precise diagnosis is a prerequisite for targeted therapies, which can prolong lives. In this work, we focus on the automatic identification of gastroesophageal adenocarcinoma (GEA) patients that qualify for a personalised therapy targeting epidermal growth factor receptor 2 (HER2).

View Article and Find Full Text PDF

The Gaussian mixture model (GMM) describes the distribution of random variables from several different populations. GMMs have widespread applications in probability theory, statistics, machine learning for unsupervised cluster analysis and topic modeling, as well as in deep learning pipelines. So far, few efforts have been made to explore the underlying point distribution in combination with the GMMs, in particular when the data becomes high-dimensional and when the GMMs are composed of many Gaussians.

View Article and Find Full Text PDF

We present the framework GUCCI (Guided Cardiac Cohort Investigation), which provides a guided visual analytics workflow to analyze cohort-based measured blood flow data in the aorta. In the past, many specialized techniques have been developed for the visual exploration of such data sets for a better understanding of the influence of morphological and hemodynamic conditions on cardiovascular diseases. However, there is a lack of dedicated techniques that allow visual comparison of multiple data sets and defined cohorts, which is essential to characterize pathologies.

View Article and Find Full Text PDF

A variety of medical imaging procedures, cadaver experiments, and computer models have been utilized to capture, depict, and understand the motion of the human lumbar spine. Particular interest lies in assessing the relative movement between two adjacent vertebrae, which can be represented by a temporal evolution of finite helical axes (FHA). Mathematically, this FHA evolution constitutes a seven-dimensional quantity: one dimension for the time, two for the (normalized) direction vector, another two for the (unique) position vector, as well as one for each the angle of rotation around and the amount of translation along the axis.

View Article and Find Full Text PDF

We propose a visualization application, designed for the exploration of human spine simulation data. Our goal is to support research in biomechanical spine simulation and advance efforts to implement simulation-backed analysis in surgical applications. Biomechanical simulation is a state-of-the-art technique for analyzing load distributions of spinal structures.

View Article and Find Full Text PDF

Augmented reality (AR) may be a useful technique to overcome issues of conventionally used navigation systems supporting medical needle insertions, like increased mental workload and complicated hand-eye coordination. Previous research primarily focused on the development of AR navigation systems designed for specific displaying devices, but differences between employed methods have not been investigated before. To this end, a user study involving a needle insertion task was conducted comparing different AR display techniques with a monitor-based approach as baseline condition for the visualization of navigation information.

View Article and Find Full Text PDF

Purpose: Intensive planning and analysis from echocardiography are a crucial step before reconstructive surgeries are applied to malfunctioning mitral valves. Volume visualizations of echocardiographic data are often used in clinical routine. However, they lack a clear visualization of the crucial factors for decision making.

View Article and Find Full Text PDF

The mitral valve, one of the four valves in the human heart, controls the bloodflow between the left atrium and ventricle and may suffer from various pathologies. Malfunctioning valves can be treated by reconstructive surgeries, which have to be carefully planned and evaluated. While current research focuses on the modeling and segmentation of the valve, we base our work on existing segmentations of patient-specific mitral valves, that are also time-resolved ( 3D+t) over the cardiac cycle.

View Article and Find Full Text PDF

This chapter discusses the concept of Auxiliary Tools in depth perception. Four recent techniques are considered, that apply the concept in the domain of liver vasculature visualization. While an improvement is evident, the evaluations and conducted studies are found to be biased and not general enough to provide a convincing assessment.

View Article and Find Full Text PDF

Augmented reality (AR) is a promising tool to improve instrument navigation in needle-based interventions. Limited research has been conducted regarding suitable navigation visualizations. In this work, three navigation concepts based on existing approaches were compared in a user study using a projective AR setup.

View Article and Find Full Text PDF

During MRI-guided interventions, navigation support is often separated from the operating field on displays, which impedes the interpretation of positions and orientations of instruments inside the patient's body as well as hand-eye coordination. To overcome these issues projector-based augmented reality can be used to support needle guidance inside the MRI bore directly in the operating field. The authors present two visualisation concepts for needle navigation aids which were compared in an accuracy and usability study with eight participants, four of whom were experienced radiologists.

View Article and Find Full Text PDF

This paper presents a framework to explore multi-field data of aneurysms occurring at intracranial and cardiac arteries by using statistical graphics. The rupture of an aneurysm is often a fatal scenario, whereas during treatment serious complications for the patient can occur. Whether an aneurysm ruptures or whether a treatment is successful depends on the interaction of different morphological such as wall deformation and thickness, and hemodynamic attributes like wall shear stress and pressure.

View Article and Find Full Text PDF

We present a Cerebral Aneurysm Vortex Classification (CAVOCLA) that allows to classify blood flow in cerebral aneurysms. Medical studies assume a strong relation between the progression and rupture of aneurysms and flow patterns. To understand how flow patterns impact the vessel morphology, they are manually classified according to predefined classes.

View Article and Find Full Text PDF

We present a framework to manage cerebral aneurysms. Rupture risk evaluation is based on manually extracted descriptors, which is time-consuming. Thus, we provide an automatic solution by considering several questions: How can expert knowledge be integrated? How should meta data be defined? Which interaction techniques are needed for data exploration.

View Article and Find Full Text PDF

We present novel techniques for visualizing, illustrating, analyzing, and generating carvings in surfaces. In particular, we consider the carvings in the plaster of the cloister of the Magdeburg cathedral, which dates to the 13th century. Due to aging and weathering, the carvings have flattened.

View Article and Find Full Text PDF

We present the first visualization tool that combines patient-specific hemodynamics with information about the vessel wall deformation and wall thickness in cerebral aneurysms. Such aneurysms bear the risk of rupture, whereas their treatment also carries considerable risks for the patient. For the patient-specific rupture risk evaluation and treatment analysis, both morphological and hemodynamic data have to be investigated.

View Article and Find Full Text PDF

Due to the intricate relationship between the pelvic organs and vital structures, such as vessels and nerves, pelvic anatomy is often considered to be complex to comprehend. In oncological pelvic surgery, a trade-off has to be made between complete tumor resection and preserving function by preventing damage to the nerves. Damage to the autonomic nerves causes undesirable post-operative side-effects such as fecal and urinal incontinence, as well as sexual dysfunction in up to 80 percent of the cases.

View Article and Find Full Text PDF

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.

View Article and Find Full Text PDF

We present the first visualization tool that combines pathlines from blood flow and wall thickness information. Our method uses illustrative techniques to provide occlusion-free visualization of the flow. We thus offer medical researchers an effective visual analysis tool for aneurysm treatment risk assessment.

View Article and Find Full Text PDF

Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature).

View Article and Find Full Text PDF

For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionefipdcmg6afn18up3e9bjtbgr063v9ap): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once