Molecular dynamics (MD) simulations are highly attractive for studying the influence of interfacial effects, such as the enrichment of components, on the mass transfer through the interface. In a recent work, we have presented a steady-state MD simulation method for investigating this phenomenon and tested it using model mixtures with and without interfacial enrichment. The present study extends this work by introducing a non-stationary MD simulation method.
View Article and Find Full Text PDFThe wetting of surfaces is strongly influenced by adsorbate layers. Therefore, in this work, sessile drops and their interaction with adsorbate layers on surfaces were investigated by molecular dynamics simulations. Binary fluid model mixtures were considered.
View Article and Find Full Text PDFA systematic study of interfacial properties of binary mixtures of simple fluids was carried out by molecular dynamics (MD) simulation and density gradient theory (DGT). The fluids are described by the Lennard-Jones truncated and shifted (LJTS) potential with truncation radius of 2.5 diameters.
View Article and Find Full Text PDFRecently, an equation of state (EoS) for the Lennard-Jones truncated and shifted (LJTS) fluid has become available. As it describes metastable and unstable states well, it is suited for predicting density profiles in vapor-liquid interfaces in combination with density gradient theory (DGT). DGT is usually applied to describe interfaces in Cartesian one-dimensional scenarios.
View Article and Find Full Text PDF