Publications by authors named "Kai Karius"

Integrative modeling enables structure determination of macromolecular complexes by combining data from multiple experimental sources such as X-ray crystallography, electron microscopy or cross-linking mass spectrometry. It is particularly useful for complexes not amenable to high-resolution electron microscopy-complexes that are flexible, heterogeneous or imaged in cells with cryo-electron tomography. We have recently developed an integrative modeling protocol that allowed us to model multi-megadalton complexes as large as the nuclear pore complex.

View Article and Find Full Text PDF

Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) fuse the inner and outer membranes of the nuclear envelope. They comprise hundreds of nucleoporins (Nups) that assemble into multiple subcomplexes and form large central channels for nucleocytoplasmic exchange. How this architecture facilitates messenger RNA export, NPC biogenesis and turnover remains poorly understood.

View Article and Find Full Text PDF

Structural characterization of large multi-subunit protein complexes often requires integrating various experimental techniques. Cross-linking mass spectrometry (XL-MS) identifies proximal protein residues and thus is increasingly used to map protein interactions and determine the relative orientation of subunits within the structure of protein complexes. To fully adapt XL-MS as a structure characterization technique, we developed Xlink Analyzer, a software tool for visualization and analysis of XL-MS data in the context of the three-dimensional structures.

View Article and Find Full Text PDF