The folate receptor alpha (FR), which is overexpressed in solid tumors including NSCLC, can be utilized for active tumor targeting to afford more effective cancer therapies. In this context, cytochrome c (Cyt c) has drawn attention to cancer research because it is non-toxic, yet, when delivered to the cytoplasm of cancer cells, can kill them by inducing apoptosis. Cyt c nanoparticles (NPs, 169 ± 9 nm) were obtained by solvent precipitation with acetonitrile, and stabilized by reversible homo-bifunctional crosslinking to accomplish a Cyt-c-based drug delivery system that combines stimulus-responsive release and active targeting.
View Article and Find Full Text PDFMalignant gliomas are the most lethal form of primary brain tumors. Despite advances in cancer therapy, the prognosis of glioma patients has remained poor. Cytochrome c (Cytc), an endogenous heme-based protein, holds tremendous potential to treat gliomas because of its innate capacity to trigger apoptosis.
View Article and Find Full Text PDF