Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions.
View Article and Find Full Text PDFSynthetic single-chain bolalipids with symmetrical headgroups have shown potential in various pharmaceutical applications, such as the stabilization of liposome bilayers. Despite their amphiphilic character, synthetic bolalipids have not yet been investigated for their suitability as solubilizing agents for poorly soluble drug compounds. In this study, three synthetic single-chain bolalipids with increasing alkyl chain lengths (C22, C24 and C26) were investigated.
View Article and Find Full Text PDFAlthough incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid.
View Article and Find Full Text PDFSix single-chain, 1,32-alkyl-branched bis(phosphocholines) PC-C32(1,32Cm)-PC have been synthesized as model lipids for naturally occurring archaeal membrane lipids. The preparation of these bipolar amphiphiles bearing lateral alkyl chains of different lengths (C4-C15) was realized using a Cu-catalyzed Grignard bis-coupling reaction of various primary alkyl-branched bromides as side parts and a 1,22-dibromide as the centre part. The aggregation behaviour of these bolalipids in water was initially investigated by differential scanning calorimetry and transmission electron microscopy.
View Article and Find Full Text PDFThe use of archaeal lipids and their artificial analogues, also known as bolalipids, represents a promising approach for the stabilization of classical lipid vesicles for oral application. In a previous study, we investigated the mixing behavior of three single-chain alkyl-branched bolalipids ( = 3, 6, 9) with either saturated or unsaturated phosphatidyl-cholines. We proved, that the bolalipids and show miscibility with 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC) and 1,2-dioleoyl--glycero-3-phosphocholine (DOPC).
View Article and Find Full Text PDFIn this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the -1 or -2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the -2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes.
View Article and Find Full Text PDFLiposomes are a promising class of drug delivery vehicles. However, no liposomal formulation has been approved for an oral application so far, due to stability issues of the liposomes in the gastrointestinal tract. Herein, we investigate the miscibility of three novel single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidylcholines by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) of stained samples, vitrified specimens, or replica of freeze-fractured samples, and dynamic light scattering (DLS).
View Article and Find Full Text PDFIn the present work, we describe the synthesis and the temperature-dependent behavior of photoreactive membrane lipids as well as their capability to study peptide/lipid interactions. The modified phospholipids contain an azide group either in the middle part or at the end of an alkyl chain and also differ in the linkage (ester vs ether) of the second alkyl chain. The temperature-dependent aggregation behavior of the azidolipids was studied using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering (SAXS).
View Article and Find Full Text PDF