An exact understanding of the conductivity of individual fibers and their networks is crucial to tailor the overall macroscopic properties of polyacrylonitrile (PAN)-based carbon nanofibers (CNFs). Therefore, microelectrical properties of CNF networks and nanoelectrical properties of individual CNFs, carbonized at temperatures from 600 to 1000 °C, are studied by means of conductive atomic force microscopy (C-AFM). At the microscale, the CNF networks show good electrical interconnections enabling a homogeneously distributed current flow.
View Article and Find Full Text PDFFuture technologies are in need of solid-state materials showing the desired chemical and physical properties, and designing such materials requires a proper understanding of their electronic structures. In this context, recent research on chalcogenides, which were classified as 'incipient metals' and included phase-change data storage materials as well as thermoelectrics, revealed a remarkable electronic behavior and possible state (dubbed 'metavalency') proposed for the frontier between entire electron localization and delocalization. Because the members of the family of the polar intermetallics vary widely in their properties as well as electronic structures, one may wonder if the aforementioned electronic characteristics are also achieved for certain polar intermetallics.
View Article and Find Full Text PDF