Fibroblast growth factor 21 (FGF21) and adiponectin increase the expression of genes involved in antioxidant pathways, but their roles in mediating oxidative stress and arterial stiffness with ageing and habitual exercise remain unknown. We explored the role of the FGF21-adiponectin axis in mediating oxidative stress and arterial stiffness with ageing and habitual exercise. Eighty age- and sex-matched healthy individuals were assigned to younger sedentary or active (18-36 years old, = 20 each) and older sedentary or active (45-80 years old, = 20 each) groups.
View Article and Find Full Text PDFWhat is the central question of this study? Fibroblast growth factor 21 (FGF21) plays important therapeutic roles in metabolic diseases but is associated with bone loss, through insulin-like growth factor binding protein 1 (IGFBP1), in animals. However, the effect of the FGF21-IGFBP1 axis on age-related bone loss has not been explored in humans. What is the main finding and its importance? Using 'genetically linked' parent and child family pairs, we show that the FGF21 concentration, but not the IGFBP1 concentration, is higher in older than in younger adults.
View Article and Find Full Text PDFObjective: To investigate age-associated changes in airway microbiome composition and their relationships with lung function and arterial stiffness among genetically matched young and elderly pairs.
Methods: Twenty-four genetically linked family pairs comprised of younger (≤40 years) and older (≥60 years) healthy participants were recruited (Total n = 48). Lung function and arterial stiffness (carotid-femoral pulse wave velocity (PWV) and augmentation index (AIx)) were assessed.
Introduction: Aging increases the prevalence of glucose intolerance, but exercise improves glucose homeostasis. The fibroblast growth factor 21 (FGF21)-adiponectin axis helps regulate glucose metabolism. However, the role of FGF21 in mediating glucose metabolism with aging and exercise remains unknown.
View Article and Find Full Text PDF