Introduction: Implantoplasty can be performed on implants diagnosed with peri-implantitis to facilitate implant decontamination and improve access for oral home care. However, its effect on the mechanical strength of the implant is still uncertain. This study aimed to evaluate the effect of implantoplasty on the fracture resistance of dental implants with various degrees of bone loss, as well as its surface changes.
View Article and Find Full Text PDFBackground: Dental caries remains a significant global health problem. One of the fundamental mechanisms underlying the development and progression of dental caries is the dynamic process of demineralisation/remineralisation. In vitro models have played a critical role in advancing our understanding of this process and identifying potential interventions to prevent or arrest dental caries.
View Article and Find Full Text PDFInfection is a major concern in surgery involving grafting and should be considered thoroughly when designing biomaterials. There is considerable renewed interest in silver nanoparticles (AgNPs) owing to their ability to potentiate antibacterial properties against multiple bacterial strains. This study aimed to develop two antibacterial bone regenerative scaffolds by integrating AgNPs in bovine bone particles (BBX) (Product 1), and a light cross-linked hydrogel GelMA (Product 2).
View Article and Find Full Text PDFThe micro/nano pores in natural mineralized tissues can, to a certain extent, affect their responses to mechanical loading but are generally ignored in existing indentation analysis. In this study, we first examined the void volume fraction of sound and caries lesion enamels through micro-computed tomography (micro-CT). A Berkovich indentation study was then carried out to characterize the effect of porous microstructure on the mechanical behavior of the human enamels.
View Article and Find Full Text PDFStatement Of Problem: Denture stomatitis can pose serious health risks, especially to older people. Chemical denture cleaning agents must be effective, yet not adversely affect the longevity of removable dentures. Ready-to-use (RTU) neutral pH electrolyzed oxidizing water (EOW) is an effective biocide against Candida albicans biofilms on denture resins, but the effects of daily disinfection with EOW on the physical and mechanical properties of resins have not been established.
View Article and Find Full Text PDFObjective: Clinical contamination during direct adhesive restorative procedures can affect various adhesive interfaces differently and contribute to bulk failure of the restorations. This review aims to summarise the current knowledge on the influence of a variety of clinical contaminants on the bond strength at various adhesive interfaces during adhesive restorative procedures and identify gaps in the literature for future research.
Data And Sources: An electronic database search was performed in PubMed and EMBASE to identify articles that investigated the influence of contaminants on direct restorative bonding procedures.
Objectives: This study evaluated the remineralization potential of calcium sodium phosphosilicate and functionalized tri-calcium phosphate (f-TCP) dentifrices in deeper incipient carious lesions (ICLs).
Materials And Methods: Artificial ICLs were created by placing premolars into demineralizing solutions. Teeth were randomly assigned into four groups: calcium sodium phosphosilicate (Group 1), f-TCP (Group 2), 1450 ppm fluoride (Group 3), and distilled water (Group 4), which were subjected to 10-day pH cycling.
The physicochemical properties of grafting materials affect the quality of the osteointegration, resorption rate, and the new bone (NB) formation. This study assessed the physicochemical properties and integration of a low temperature deproteinized bovine bone xenograft (BBX), referred to as optimized MoaBone® (OMB). This novel BBX was physiochemically characterized both pre and post chemical bleaching and sterilization by gamma irradiation.
View Article and Find Full Text PDFIntroduction: This study aimed to investigate the remineralisation effect of combined use of a bioinspired self-assembling peptide (P26) and fluoride varnish on artificial early enamel caries lesions.
Methods: Bovine enamel blocks with artificial early enamel caries lesions were prepared. The blocks were randomly allocated to four experimental groups to receive the following treatments: A = P26 + fluoride varnish, B = P26, C = fluoride varnish, and D.
The purpose of this study was to evaluate and measure the microleakage inhibiting quality of provisional restorations manufactured using computer-aided manufacturing, 3D printing, and chairside molded provisional restorative materials. Fifteen provisional restorations each from 3D printed, milled, and chairside molded were manufactured. All restorations were cemented onto sintered zirconia abutment dies and adhered with zinc-oxide non-eugenol temporary cement.
View Article and Find Full Text PDFThe management of root caries remains a challenge for clinicians due to its unique anatomical location and structure. There is increasing interest in utilising artificial root caries lesions to develop new strategies for remineralisation. An ideal protocol has not yet been agreed upon.
View Article and Find Full Text PDFBackground: The aim of this research was to compare the efficacy of the remineralising potential of self-assembling peptides (SAPs): Curodont Repair (P11-4), P26, and leucine-rich amelogenin peptides (LRAP) with the standard 5% NaF varnish (Duraphat) on early enamel caries lesions (EECLs).
Methods: A demineralising solution (DS) was used to create artificial EECLs in human dental enamel specimens, which were randomly allocated to treatment groups: P11-4; P26 solution; LRAP solution; 5% NaF varnish; and deionised water (DIW). Each specimen was subjected to 8 days of pH cycling.
Large oral bone defects require grafting of bone blocks rather than granules to give physically robust, biocompatible and osteoconductive regeneration. Bovine bone is widely accepted as a source of clinically appropriate xenograft material. However, the manufacturing process often results in both reduced mechanical strength and biological compatibility.
View Article and Find Full Text PDFPurpose: To investigate the mineral density and lesion depth of artificial caries lesions on aprismatic enamel and prismatic enamel created by lactic acid and acetic acid buffers.
Methods: Forty bovine enamel blocks were allocated to: aprismatic enamel (Group A) and prismatic enamel (Group C) in acetic acid buffer for 192 h and aprismatic enamel (Group B) and prismatic enamel (Group D) in lactic acid buffer for 96 h. The mineral loss and lesion depth were measured using micro-computed tomography.
The influence of thermocycling on the surface deterioration of glazed monolithic high translucent 3Y-TZP dental restorations is still unclear. The purpose of this study therefore was to evaluate low temperature degradation (LTD), elemental release and surface degradation pattern after five years of simulated clinical time. A total of 123 specimens were prepared from second-generation high translucent 3Y-TZP as per ISO 6872:2015 standards (3 mm × 4 mm × 30 mm).
View Article and Find Full Text PDFBovine bone grafts (BBX) require protein removal as part of the manufacturing process to reduce antigenicity and, in consequence, to be safely used in humans. Deproteinisation may have direct effects on the characteristics of the bone material and on in vivo material performance. This research aimed to comprehensively study the physicochemical and mechanical properties of BBX processed at low deproteinisation processing temperatures.
View Article and Find Full Text PDFObjectives: Investigate the effect of aging on the wear behavior of glazed vs polished monolithic zirconia and to establish if glazing provides protection against low temperature degradation.
Methods: 40 1-mm-diameter spheres made from four differently treated monolithic zirconia (VITA YZ® HT); polished, polished-aged, glazed and glazed-aged (n = 10), were tested in a wear testing machine (UFW200) against bovine enamel in artificial saliva as per the following settings (ISO20808:2016): ball-on-disc configuration, 5 N vertical load, 0.1 m/s sliding speed, 400 m sliding distance and 37 °C temperature.
Ideal bone grafting scaffolds are osteoinductive, osteoconductive, and encourage osteogenesis through the remodeling processes of bone resorption, new bone formation, and successful integration or replacement; however, achieving this trifecta remains challenging. Production methods of bone grafts, such as thermal processing, can have significant effects on the degree of cell-surface interactions via wide-scale changes in the material properties. Here, we investigated the effects of small incremental changes at low thermal processing temperatures on the degree of osteoclast and osteoblast attachment, proliferation, and differentiation.
View Article and Find Full Text PDF(1) Background: The effect of glazing on the mechanical properties of monolithic high translucent zirconia is not well reported. Therefore, the purpose of this study was to evaluate the effect of glazing on the flexural strength of high translucent zirconia; (2) Methods: Ninety specimens were prepared from second-generation 3Y-TZP high translucent blocks and divided into three groups. Glaze materials were applied on one surface of the specimen and subjected to a four-point bending test and flexural stress and flexural displacement values were derived.
View Article and Find Full Text PDFPurpose: To investigate the effect of pretreatment protocols involving Papacarie Duo gel and Scotchbond Universal (SU) on the microshear bond strength (µSBS) of resin composite (RC) to hypomineralised enamel (HE).
Materials And Methods: Specimens of normal enamel (NE) and HE were derived from extracted hypomineralised first permanent molars (FPMs). Based on the colour of demarcated opacities, HE specimens were classified as creamy/white (CW) or yellow/brown (YB).
Objective: On May 2, 2017, an outbreak of unexplained fever with rashes was reported in Lu'an, China. In this study, we aimed to identify the possible pathogens, epidemiological characteristics, and risk factors of this outbreak.
Methods: We conducted descriptive field epidemiological studies.
Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites.
View Article and Find Full Text PDFThe site-dependent load-deformation behavior of the human neurocranium and the load dissipation within the three-layered composite is not well understood. This study mechanically investigated 257 human frontal, temporal, parietal and occipital neurocranial bone samples at an age range of 2 to 94 years, using three-point bending tests. Samples were tested as full-thickness three-layered composites, as well as separated with both diploë attached and removed.
View Article and Find Full Text PDF