Constructing a complex functional gene circuit composed of different modular biological parts to achieve the desired performance remains challenging without a proper understanding of how the individual module behaves. To address this, mathematical models serve as an important tool toward better interpretation by quantifying the performance of the overall gene circuit, providing insights, and guiding the experimental designs. As different gene circuits might require exclusively different mathematical representations in the form of ordinary differential equations to capture their transient dynamic behaviors, a recurring challenge in model development is the selection of the appropriate model.
View Article and Find Full Text PDF