Publications by authors named "Kai Baldenius"

Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.

View Article and Find Full Text PDF

Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals.

View Article and Find Full Text PDF

Continuous low-level supply or in situ generation of hydrogen peroxide (HO) is essential for the stability of unspecific peroxygenases, which are deemed ideal biocatalysts for the selective activation of C-H bonds. To envisage potential large scale applications of combined catalytic systems the reactions need to be simple, efficient and produce minimal by-products. We show that gold-palladium nanoparticles supported on TiO or carbon have sufficient activity at ambient temperature and pressure to generate HO from H and O and supply the oxidant to the engineered unspecific heme-thiolate peroxygenase PaDa-I.

View Article and Find Full Text PDF

Correction for 'Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum' by Katharina Schmölzer et al., Org. Biomol.

View Article and Find Full Text PDF

Lacto-N-biose 1,2-oxazoline was prepared chemo-enzymatically and shown to be a donor substrate for β-1,3-glycosylation of lactose by the wild-type and glycosynthase variants (D320E, D320A, Y419F) of Bifidobacterium bifidum β-N-hexosaminidase. Lacto-N-tetraose, a core structure of human milk oligosaccharides, was formed in 20-60% yield of donor substrate (up to 8 mM product titre), depending on the degree of selectivity control by the enzyme used.

View Article and Find Full Text PDF

Undesired product hydrolysis along with large amounts of waste in form of inorganic monophosphate by-product are the main obstacles associated with the use of pyrophosphate in the phosphatase-catalyzed synthesis of phosphate monoesters on large scale. In order to overcome both limitations, we screened a broad range of natural and synthetic organic phosphate donors with several enzymes on a broad variety of hydroxyl-compounds. Among them, acetyl phosphate delivered stable product levels and high phospho-transfer efficiency at the lower functional pH-limit, which translated into excellent productivity.

View Article and Find Full Text PDF

The major drawback of using phosphatases for transphosphorylation reactions lies in product depletion caused by the natural hydrolytic activity of the enzymes. Variants of PhoC-Mm from Morganella morganii and NSAP-Eb from Escherichia blattae were studied for their ability to maintain a high product level in the transphosphorylation of various primary alcohols. A single amino acid exchange delivered phosphatase variant PhoC-Mm G92D, which was able to catalyze the phosphorylation of primary alcohols without any major hydrolysis of the formed phosphate esters.

View Article and Find Full Text PDF

The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety.

View Article and Find Full Text PDF

We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate.

View Article and Find Full Text PDF

The enzyme aryl/alkenyl malonate decarboxylase (AMDase) catalyses the enantioselective decarboxylative protonation (EDP) of a range of disubstituted malonic acids to give homochiral carboxylic acids that are valuable synthetic intermediates. AMDase exhibits a number of advantages over the non-enzymatic EDP methods developed to date including higher enantioselectivity and more environmentally benign reaction conditions. In this report, AMDase and engineered variants have been used to produce a range of enantioenriched heteroaromatic α-hydroxycarboxylic acids, including pharmaceutical precursors, from readily accessible α-hydroxymalonates.

View Article and Find Full Text PDF

The enzyme catalysed esterification of starch and fatty acids with terminal triple bonds is described. This material can be used as an acceptor for azide containing molecules, through azide/alkyne cycloaddition. The potential is illustrated by the production of fluorescently-labelled starch, and a biotinylated derivative which can bind streptavidin.

View Article and Find Full Text PDF