Publications by authors named "Kahyun Park"

Given a graph dataset, how can we generate meaningful graph representations that maximize classification accuracy? Learning representative graph embeddings is important for solving various real-world graph-based tasks. Graph contrastive learning aims to learn representations of graphs by capturing the relationship between the original graph and the augmented graph. However, previous contrastive learning methods neither capture semantic information within graphs nor consider both nodes and graphs while learning graph embeddings.

View Article and Find Full Text PDF

Soil color is commonly used as an indicator to classify soil and identify its properties. However, color-based soil assessments are susceptible to variations in light conditions and the subjectivity of visual evaluations. This study proposes a novel method of calibrating digital images of soil, regardless of lighting conditions, to ensure accurate identification.

View Article and Find Full Text PDF