Human lung deposition data is non-mandatory for drug approval but very useful for the development of orally inhaled drug products. Lung deposition of inhaled drugs can be quantified by radionuclide imaging, for which one of the first considerations is the method used to radiolabel formulations. In this study, we report the development of a radiolabeling method for lyophilizate for dry powder inhalation (LDPI) formulations.
View Article and Find Full Text PDFIt has been previously reported that active vitamin D3 (VD3) is a candidate drug that can repair alveolar damage in chronic obstructive pulmonary disease at a very low dose. We herein report the optimization of a very low-dose formulation of VD3 for dry powder inhalation by a simple method based on time-of-flight (TOF) theory. As the preparation content of VD3 is very low, aerodynamic particle size distribution cannot be measured by pharmacopeial methods that require quantification of the main drug.
View Article and Find Full Text PDFGhrelin is the peptide that increases the hunger sensation and food intake and is expected to be clinically applied for treatment of diseases such as cachexia and anorexia nervosa. In the clinical application of ghrelin, injections are problematic in that they are invasive and inconvenient. Thus, we aimed to develop a formulation that can eliminate the need for injections and can be applied clinically.
View Article and Find Full Text PDFRecently, statistical techniques such as design of experiments are being applied for efficient optimization of oral formulations. To use these statistical techniques for inhalation formulations, efficient methods for rapid determination of the aerodynamic particle size distribution of many samples are needed. Therefore, we aimed to develop a simple method to measure aerodynamic particle size distribution that closely agrees with the results of inhalation characteristic tests.
View Article and Find Full Text PDFInhalation of proteins/peptides has recently received attention as various biopharmaceuticals have emerged on the market. Novel lyophilisates for dry powder inhalation (LDPIs), which are aerosolized by air impact, have been reported and LDPIs are considered an attractive option for the pulmonary administration of biopharmaceuticals. However, desirable disintegration and aerosolization properties have been unavailable in high-dose formulations, which has been a critical issue.
View Article and Find Full Text PDF