Publications by authors named "Kah-Yim Peh"

There have been considerable efforts to engineer three-dimensional (3D) microfluidic environments to enhance cellular function over conventional two-dimensional (2D) cultures in microfluidic chips, but few involve topographical features, such as micro/nano-grooves, which are beneficial for cell types of cardiac, skeletal and neuronal lineages. Here we have developed a cost-effective and scalable method to incorporate micro-topographical cues into microfluidic chips to induce cell alignment. Using commercially available optical media as molds for replica molding, we produced large surface areas of polydimethylsiloxane (PDMS) micro-grooved substrates and plasma-bonded them to multiple microfluidic chips.

View Article and Find Full Text PDF

Cell alignment by underlying topographical cues has been shown to affect important biological processes such as differentiation and functional maturation in vitro. However, the routine use of cell culture substrates with micro- or nano-topographies, such as grooves, is currently hampered by the high cost and specialized facilities required to produce these substrates. Here we present cost-effective commercially available optical media as substrates for aligning cells in culture.

View Article and Find Full Text PDF