Publications by authors named "Kah Fai Leong"

Polymer foam that provides good support with high energy return (low energy loss) is desirable for sport footwear to improve running performance. Ethylene-vinyl acetate copolymer (EVA) foam is commonly used in the midsole of running shoes. However, EVA foam exhibits low mechanical properties.

View Article and Find Full Text PDF

In the current research, the delamination behavior under Mode I and Mode II loading for the hybrid carbon-thermoplastic fabrics in conjunction with novel liquid thermoplastic acrylic Elium resin processable at ambient conditions was studied. The experimentation by incorporating doublers methodology, studying the performance under Mode I and Mode II loading, and understanding failure mechanisms using surface morphological fractography is deliberated. Hybrid Carbon-Ultra-high molecular weight polyethylene (UHMWPP)/Elium composite has shown a 22.

View Article and Find Full Text PDF

The joining of composites can be performed in an extremely short time with more energy-efficient ultrasonic welding techniques. The current research investigated the performance optimization of ultrasonic welding of carbon/Elium composite to carbon/epoxy composite using a polymethyl methacrylate (PMMA) coupling interlayer. The weld strength was quantified by static lap shear strength (LSS) testing.

View Article and Find Full Text PDF

Tubular composites are widely used in many industrial applications, and there is need to use new material and reliable manufacturing processes to improve the performance and process aspects. The current research presents a detailed study to understand the flexure response of rectangular tubular composites based on thin ply carbon fibres and Elium resin. Another aim was to understand the failure mechanisms of novel tubular thermoplastic composite systems and carry out a baseline comparison with Epoxy-based tubular systems.

View Article and Find Full Text PDF

The bladder molding process is primarily used in sporting applications but mostly with prepregs. Bladder-Assisted Resin Transfer Molding (B-RTM) presents the tremendous potential to automate and mass produce the complex hollow-composite profiles. Thin-ply, non-crimp fabrics (NCFs) provide excellent mechanical, fracture toughness, and vibration damping properties on top of the weight saving it offers to a final product.

View Article and Find Full Text PDF

Gastrocnemius' role as an agonist or antagonist of the anterior cruciate ligament (ACL) is not well understood. This study explored the use of ultrasound imaging to investigate how gastrocnemius stimulation levels influenced anterior tibial translation. The gastrocnemii of 10 participants were stimulated to four different levels using electrical muscle stimulation.

View Article and Find Full Text PDF

The current research work presents a first attempt to investigate the welding attributes of Elium thermoplastic resin and the fusion bonding using ultrafast ultrasonic welding technique. The integrated energy director (ED) polymer-matrix composites (PMCs) panel manufacturing was carried out using the Resin Transfer Moulding (RTM) technique and the scheme is deduced to manufacture a bubble-free panel. Integrated ED configurations and flat specimens with Elium film of different thickness at the interface were investigated for ultrasonic welding optimization.

View Article and Find Full Text PDF

The ultrasonic welding (UW) technique is an ultra-fast joining process, and it is used to join thermoplastic composite structures, and provides an excellent bonding strength. It is more cost-efficient as opposed to the conventional adhesive, mechanical and other joining methods. This review paper presents the detailed progress made by the scientific and research community to date in the direction of the UW of thermoplastic composites.

View Article and Find Full Text PDF

: Small knee flexion angles are associated with increased non-contact anterior cruciate ligament (ACL) injury risks. The purpose of this study was to provide insights into how ankle plantar flexion angles influenced knee flexion angles at initial contact during single-leg drop landings. : Thirteen male recreational basketball players performed single-leg drop landings from a 30-cm high platform using three randomized foot-landing positions (natural, fore-foot, and flat-foot).

View Article and Find Full Text PDF

A robust alginate/methylcellulose (Alg/MC) blend hydrogel, with a strategy to improve adhesion between printed layers, has been fabricated for the first time for three-dimensional (3D) bioprinting. The optimized Alg/MC blend hydrogel exhibits a highly thixotropic property, great extrudability, and stackability. With treatment by a trisodium citrate (TSC) solution, the interfacial bonding between the printed layers is significantly improved.

View Article and Find Full Text PDF

As an important metal three-dimensional printing technology, electron beam melting (EBM) is gaining increasing attention due to its huge potential applications in aerospace and biomedical fields. EBM processing of Ti-6Al-4V as well as its microstructure and mechanical properties were extensively investigated. However, it is still lack of quantitative studies regarding its microstructural evolution, indicative of EBM thermal process.

View Article and Find Full Text PDF

In tissue engineering, there is limited availability of a simple, fast and solvent-free process for fabricating micro-porous thin membrane scaffolds. This paper presents the first report of a novel surface suspension melt technique to fabricate a micro-porous thin membrane scaffolds without using any organic solvent. Briefly, a layer of polycaprolactone (PCL) particles is directly spread on top of water in the form of a suspension.

View Article and Find Full Text PDF

It is believed that the crucial step towards preparation of electrical conductive polymer-carbon nanotube (CNT) composites is dispersing CNTs with a high length-to-diameter aspect ratio in a well-aligned manner. However, this process is extremely challenging when dealing with long and entangled CNTs. Here in this study, a new approach is demonstrated to fabricate conductive polymer-CNT composite fibers without involving any dispersion process.

View Article and Find Full Text PDF

Perfusion culture is a commonly used dynamic culture technique in tissue engineering for promoting higher cell number growth. Under perfusion culture, the cell number could be co-influenced by cell detachment and cell proliferation. However, previous studies have mainly focused on the perfusion effects on cell proliferation but largely ignored the aspect of cell detachment.

View Article and Find Full Text PDF

Fabrication of aligned microfiber scaffolds is critical in successful engineering of anisotropic tissues such as tendon, ligaments and nerves. Conventionally, aligned microfiber scaffolds are two dimensional and predominantly fabricated by electrospinning which is solvent dependent. In this paper, we report a novel technique, named microfiber melt drawing, to fabricate a bundle of three dimensionally aligned polycaprolactone microfibers without using any organic solvent.

View Article and Find Full Text PDF

Computer-aided system for tissue scaffolds (CASTS) is an in-house parametric library of polyhedral units that can be assembled into customized tissue scaffolds. Thirteen polyhedral configurations are available to select, depending on the biological and mechanical requirements of the target tissue/organ. Input parameters include the individual polyhedral units and overall scaffold block as well as the scaffold strut diameter.

View Article and Find Full Text PDF

This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.

View Article and Find Full Text PDF

A major challenge in tissue engineering has been to develop scaffolds with controlled complex geometries, on both the macro- and micro-scale. One group of techniques, using rapid prototyping (RP) processes, has the capability to produce complex three-dimensional structures with good control over the size, geometry, and connectivity of the pores. In this article, a novel technique based on RP technology, that is, cryogenic prototyping (CP), that has the capability to fabricate scaffolds with controlled macro- and micro-structures, is presented.

View Article and Find Full Text PDF

Interstitial flow (IF) modulates both the biochemical and biophysical cues surrounding cells. It represents a very important regulating mechanism for cell/tissue function and has been commonly utilized in tissue engineering (TE). This article discusses the possible regulating mechanisms of IF on fibroblasts, the various fibroblast responses to IF, the current challenges in understanding the IF-fibroblast relationship and the application of IF for fibroblast involved TE.

View Article and Find Full Text PDF

In scaffold guided tissue engineering (TE), temporary three-dimensional scaffolds are essential to guide and support cell proliferation. Selective Laser Sintering (SLS) is studied for the development of such scaffolds by eliminating pore spatial control problems faced in conventional scaffolds fabrication methods. SLS offers good user control over the scaffold's microstructures by adjusting its main processing parameters, namely the laser power, scan speed and part bed temperature.

View Article and Find Full Text PDF

95/5 Poly(L-lactide-co-glycolide) was investigated for the role of a porous scaffold, using the selective laser sintering (SLS) fabrication process, with powder sizes of 50-125 and 125-250 microm. SLS parameters of laser power, laser scan speed, and part bed temperature were altered and the degree of sintering was assessed by scanning electron microscope. Composites of the 125-250 microm polymer with either hydroxylapatite or hydroxylapatite/beta-tricalcium phosphate (CAMCERAM II were sintered, and SLS settings using 40 wt % CAMCERAM II were optimized for further tests.

View Article and Find Full Text PDF

Porous collagen scaffolds with predefined 3-dimesional (3-D) networks of internal channels are fabricated via an indirect rapid prototyping technique. To obtain the scaffolds, two drying methods, namely critical point drying and freeze-drying were investigated. The latter was found to be a more suitable process as it induced less shrinkage and reproduced the design morphology accurately.

View Article and Find Full Text PDF

Tissue engineering aims to produce patient-specific biological substitutes in an attempt to circumvent the limitations of existing clinical treatments for damaged tissue or organs. The main regenerative tissue engineering approach involves transplantation of cells onto scaffolds. The scaffold attempts to mimic the function of the natural extracellular matrix, providing a temporary template for the growth of target tissues.

View Article and Find Full Text PDF

In this article, an approach for tissue-engineering (TE) scaffold fabrication by way of integrating computer-based medical imaging, computer graphics, data manipulation techniques, computer-aided design (CAD), and rapid prototyping (RP) technologies is introduced. The aim is to provide a generic solution for the production of scaffolds that can potentially meet the diverse requirements of TE applications. In the work presented, a novel parametric library of open polyhedral unit cells is developed to assist the user in designing the microarchitecture of the scaffold according to the requirements of its final TE application.

View Article and Find Full Text PDF