The one-electron oxidation of metal thiolates results in an increased oxidation state of the metal ion or the formation of a sulfur-based, thiyl radical in limiting extremes. For complexes with highly covalent M-S bonds, the unpaired electron may be delocalized over the metal and the sulfur, yielding a metal-stabilized thiyl radical. Oxidation of the metal thiolate precursors [Ru(DPPBT)(3)](-), [Ru-1](-), and Re(DPPBT)(3), Re-1 (DPPBT = diphenylphosphinobenzenethiolate), generates metal-stabilized thiyl radicals that react with alkenes to yield dithioether-metal products.
View Article and Find Full Text PDFThe influence of oxidation state on the reversibility of carbon-sulfur bond forming reactions between ethylene and [Re(DPPBT)(3)](n+) (n = 0, +1, +2; DPPBT = 2-diphenylphosphinobenzenethiolate) has been investigated. For the neutral complex [Re(DPPBT)(3)], no reaction with ethylene is spectroscopically detectable consistent with the determined equilibrium constant, K(1), of (1.9 +/- 0.
View Article and Find Full Text PDF