Publications by authors named "Kagbadouno M"

Human African Trypanosomiasis (HAT) is caused by which is transmitted by the tsetse fly insect vector ( spp). It is one of the 20 Neglected Tropical Diseases (NTD) listed by the WHO. These diseases affect the poorest and most vulnerable communities, for which the WHO has established a dedicated 2021-2030 roadmap.

View Article and Find Full Text PDF
Article Synopsis
  • Brucellosis, Q fever, and Rift Valley fever are important zoonotic diseases causing economic issues in livestock, particularly in developing African countries like Guinea, where they are often under-reported.
  • The study assessed the presence of these diseases in domestic ruminants by analyzing blood samples from over 1,300 animals across 17 areas in Guinea between 2017 and 2019, finding cattle had the highest rates of infection.
  • The findings emphasize the need for better monitoring of these diseases in livestock and suggest health screenings for humans in contact with affected animals, advocating for a coordinated One Health approach.
View Article and Find Full Text PDF

Background: Activities to control human African trypanosomiasis (HAT) in Guinea were severely hampered by the Ebola epidemic that hit this country between 2014 and 2016. Active screening was completely interrupted and passive screening could only be maintained in a few health facilities. At the end of the epidemic, medical interventions were progressively intensified to mitigate the risk of HAT resurgence and progress towards disease elimination.

View Article and Find Full Text PDF

Microsatellite loci still represent valuable resources for the study of the population biology of non-model organisms. Discovering or adapting new suitable microsatellite markers in species of interest still represents a useful task, especially so for non-model organisms as tsetse flies (genus Glossina), which remain a serious threat to the health of humans and animals in sub-Saharan Africa. In this paper, we present the development of new microsatellite loci for four species of Glossina: two from the Morsitans group, G.

View Article and Find Full Text PDF

In 2017, 1447 new cases of Human African Trypanosomiasis (HAT) were reported, which reflects considerable progress towards the World Health Organisation's target of eliminating HAT as a public health problem by 2020. However, current epidemiological data are still lacking for a number of areas, including historical HAT foci. In order to update the HAT situation in the historical focus of forested Guinea, we implemented a geographically based methodology: Identification of Villages at Risk (IVR).

View Article and Find Full Text PDF

Background: Control of gambiense sleeping sickness, a neglected tropical disease targeted for elimination by 2020, relies mainly on mass screening of populations at risk and treatment of cases. This strategy is however challenged by the existence of undetected reservoirs of parasites that contribute to the maintenance of transmission. In this study, performed in the Boffa disease focus of Guinea, we evaluated the value of adding vector control to medical surveys and measured its impact on disease burden.

View Article and Find Full Text PDF

The increase of human population, combined with climatic changes, contributed to the modification of spatial distribution of tsetse flies, main vector of trypanosomiasis. In order to establish and compare tsetse presence and their relationship with vegetation, entomological survey was performed using biconical traps deployed in transects, simultaneously with phyto-sociological study, on the Comoe river at its source in the village of Moussodougou, and in the semi-protected area of Folonzo, both localities in Southern Burkina Faso. In Folonzo, the survey revealed a diversity of tsetse with 4 species occurring with apparent densities as follows: Glossina tachinoides (8.

View Article and Find Full Text PDF

Background: Human African Trypanosomiasis (HAT) is an important neglected tropical disease caused by Trypanosoma spp. parasites transmitted by species of tsetse fly (Glossina spp). The most important vectors of HAT are riverine tsetse and these can be controlled by attracting them to stationary baits such as insecticide-impregnated traps or targets deployed along the banks of rivers.

View Article and Find Full Text PDF

Seeking to understand how humans, by the settlements they create (among other means), influence the operation of the pathogen system of sleeping sickness, the authors performed a diachronic analysis of the landscape and settlement dynamics by comparing topographic maps from 1957, a satellite image from 2004, and georeferenced censuses from 2009 and 2001. It appears that the extreme mobility of the population between the continent and the islands is the principal cause for the continuation of this disease at the mouth of the Rio Pongo.

View Article and Find Full Text PDF
Article Synopsis
  • Human African Trypanosomiasis (HAT) is a deadly disease in West Africa caused by the Trypanosoma brucei gambiense parasite, primarily transmitted by the tsetse fly.
  • A study conducted in Boffa, Guinea, revealed that while many people and livestock were present, 45 cases of HAT were found among over 14,000 surveyed, highlighting a significant underreporting of the disease.
  • To effectively eliminate HAT, the research suggests combining medical case detection and treatment with vector control measures to reduce the tsetse fly population and prevent further transmission.
View Article and Find Full Text PDF

Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water.

View Article and Find Full Text PDF

Background: The tsetse fly Glossina palpalis gambiensis is the main vector of sleeping sickness (Human African Trypanosomiasis - HAT) in West Africa, in particular in littoral Guinea where this disease is currently very active. The Loos islands constitute a small archipelago some 5 km from mainland Guinea, where G. p.

View Article and Find Full Text PDF

Guinea is the West African country which is currently the most prevalent for sleeping sickness. The littoral area is the region where most of the recent sleeping sickness cases have been described, especially the mangrove sleeping sickness foci of Dubreka and Boffa where Glossina palpalis gambiensis is the vector. Loos islands constitute a small archipelago 5 km apart from the capital, Conakry.

View Article and Find Full Text PDF

Background: We undertook a population genetics analysis of the tsetse fly Glossina palpalis gambiensis, a major vector of sleeping sickness in West Africa, using microsatellite and mitochondrial DNA markers. Our aims were to estimate effective population size and the degree of isolation between coastal sites on the mainland of Guinea and Loos Islands. The sampling locations encompassed Dubréka, the area with the highest Human African Trypanosomosis (HAT) prevalence in West Africa, mangrove and savannah sites on the mainland, and two islands, Fotoba and Kassa, within the Loos archipelago.

View Article and Find Full Text PDF

Allele frequencies at four microsatellite loci, and morphometric features based on 11 wing landmarks, were compared among three populations of Glossina palpalis gambiensis (Diptera: Glossinidae) in Guinea. One population originated from the Loos islands separated from the capital Conakry by 5 km of sea, and the two others originated from the continental mangrove area close to Dubreka, these two groups being separated by approximately 30 km. Microsatellites and wing geometry data both converged to the idea of a separation of the Loos island population from those of the mangrove area.

View Article and Find Full Text PDF

The purpose of this study carried out in two adjacent areas of the coastal mangrove forest of Guinea (Dubreka and Boffa) was to screen the population for disease, provide information on human African trypanosomiasis (HAT, a.k.a.

View Article and Find Full Text PDF