Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates.
View Article and Find Full Text PDFBackground: Programmed cell death 1 (PD-1) belongs to immune checkpoint proteins ensuring negative regulation of the immune response. In non-small cell lung cancer (NSCLC), the sensitivity to treatment with anti-PD-1 therapeutics, and its efficacy, mostly correlated with the increase of tumor infiltrating PD-1 lymphocytes. Due to solid tumor heterogeneity of PD-1 populations, novel low molecular weight anti-PD-1 high-affinity diagnostic probes can increase the reliability of expression profiling of PD-1 tumor infiltrating lymphocytes (TILs) in tumor tissue biopsies and in vivo mapping efficiency using immune-PET imaging.
View Article and Find Full Text PDFIL-6 is considered one of the well characterized cytokines exhibiting homeostatic, pro- and anti-inflammatory activities, depending on the receptor variant and the induced intracellular cis- or trans-signaling responses. IL-6-activated pathways are involved in the regulation of cell proliferation, survival, differentiation, and cell metabolism changes. Deviations in IL-6 levels or abnormal response to IL-6 signaling are associated with several autoimmune diseases including IgA nephropathy (IgAN), one of most frequent primary glomerulonephritis worldwide.
View Article and Find Full Text PDFHydrolase enzymes, including proteases, are encoded by 2-3% of the genes in the human genome and 14% of these enzymes are active drug targets. However, the activities and substrate specificities of many proteases-especially those embedded in membranes-and other hydrolases remain unknown. Here we report a strategy for creating mechanism-based, light-activated protease and hydrolase substrate traps in complex mixtures and live mammalian cells.
View Article and Find Full Text PDFProzymes are pseudoenzymes that stimulate the function of weakly active enzymes through complex formation. The major Trypanosoma brucei protein arginine methyltransferase, TbPRMT1 enzyme (ENZ), requires TbPRMT1 prozyme (PRO) to form an active heterotetrameric complex. Here, we present the X-ray crystal structure of the TbPRMT1 ENZ-Δ52PRO tetrameric complex with the cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.
View Article and Find Full Text PDFIn and related kinetoplastid parasites, transcription of protein coding genes is largely unregulated. Rather, mRNA binding proteins, which impact processes such as transcript stability and translation efficiency, are the predominant regulators of gene expression. Arginine methylation is a posttranslational modification that preferentially targets RNA binding proteins and is, therefore, likely to have a substantial impact on biology.
View Article and Find Full Text PDFKidney Blood Press Res
October 2018
Background/aims: IgA nephropathy is associated with aberrant O-glycosylation of IgA1, which is recognized by autoantibodies leading to the formation of circulating immune complexes. Some of them, after deposition into kidney mesangium, trigger glomerular injury. In patients with active disease nonresponding to angiotensin-converting enzyme inhibitors or angiotensin II blockers, corticosteroids are recommended.
View Article and Find Full Text PDFIgA nephropathy (IgAN) is the most common type of glomerulonephritis. Its etiology involves an increased production of polymeric immunoglobulin A1 with an abnormal composition of some carbohydrate chains. The reaction of these abnormal forms of IgA1 with specific autoantibodies while circulating immune complexes arise and settle in the renal mesangium with subsequent inflammatory activation of mesangial cells which in up to 50% of cases results in end-stage kidney failure.
View Article and Find Full Text PDFProzymes are catalytically inactive enzyme paralogs that dramatically stimulate the function of weakly active enzymes through complex formation. The two prozymes described to date reside in the polyamine biosynthesis pathway of the human parasite , an early branching eukaryote that lacks transcriptional regulation and regulates its proteome through posttranscriptional and posttranslational means. Arginine methylation is a common posttranslational modification in eukaryotes catalyzed by protein arginine methyltransferases (PRMTs) that are typically thought to function as homodimers.
View Article and Find Full Text PDFBackground: Periodontitis is a chronic inflammatory disease initiated by a synergistic and dysbiotic microbial community that elicits a gingival inflammatory response leading to tissue breakdown. Periodontitis shares many characteristics with other chronic inflammatory diseases, including abnormal glycosylation of immunoglobulin (Ig)G. The current authors have previously demonstrated that IgG from gingival crevicular fluid (GCF) of patients with chronic periodontitis contains galactose (Gal)-deficient IgG.
View Article and Find Full Text PDFUridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1) complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA) binding proteins.
View Article and Find Full Text PDFA majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA.
View Article and Find Full Text PDFTrypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions.
View Article and Find Full Text PDFEmbryonic stem cells seem to have the intriguing capacity to divide indefinitely while retaining their pluripotency. This self-renewal is accomplished by specialized mechanisms of cell-cycle control. In the last few years, several studies have provided evidence for a direct link between cell-cycle regulation and cell-fate decisions in stem cells.
View Article and Find Full Text PDFCyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) proliferate rapidly and have a unique cell-cycle structure with a very short G1 phase. Previous reports suggested that the rapid G1 phase progression of ESCs might be underpinned by high and precocious Cdk2 activity and that Cdk2 activity might be crucial for both cell-cycle regulation and cell-fate decisions in human ESCs. However, the actual role of Cdk2 in cell-cycle progression of mouse ESCs (mESCs) has not been elucidated.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2005
Preventive vaccination by a hsp90-expressing DNA vaccine and recombinant hsp90 protein vaccine, both derived from the Candida albicans hsp90 using BALB-c mouse model of systemic candidiasis, was performed. Hsp90 mRNA was cloned from a clinical isolate of C. albicans, converted to cDNA and cloned into vaccination plasmid pVAX1.
View Article and Find Full Text PDFHeat shock protein 60 (hsp60) were isolated from several fungal, protozoal and many bacterial pathogens and successfully used for protective vaccination in some infection models. This work focuses on the isolation of recombinant hsp60 from the dermatophyte, Trichophyton mentagrophytes as a potentially protective antigen in trichophytosis. With the help of a previously tested set of degenerated primers, it was used reverse transcriptase polymerase chain reaction (RT-PCR) for isolation of partial cDNA of the hsp60 T.
View Article and Find Full Text PDFActa Univ Palacki Olomuc Fac Med
January 2001