Pharmaceuticals (Basel)
July 2023
Lantibiotics are believed to have a conceivable potential to be used as therapeutics, especially against clinically resistant bacterial strains. However, their low solubility and poor stability under physiological conditions limit their availability for clinical studies and further pharmaceutical commercialization. Nisin is a readily available and cheap lanthipeptide and thus serves as a good model in the search for the tools to engineer lantibiotics with improved pharmacological properties.
View Article and Find Full Text PDFA one-pot lithiation-phosphonylation procedure was elaborated as a method to prepare heteroaromatic phosphonic acids. It relied on the direct lithiation of heteroaromatics followed by phosphonylation with diethyl chlorophosphite and then oxidation with hydrogen peroxide. This protocol provided the desired phosphonates with satisfactory yields.
View Article and Find Full Text PDFThe incorporation of dehydroamino acid or fragments of oxazole into peptide chain is accompanied by a distorted three-dimensional structure and additionally enables the introduction of non-typical side-chain substituents. Thus, such compounds could be building blocks for obtaining novel foldamers and/or artificial enzymes (artzymes). In this paper, effective synthetic procedures leading to such building blocks-tetrapeptides containing glycyldehydroalanine, glycyldehydrophenylalanine, and glycyloxazole subunits-are described.
View Article and Find Full Text PDFSynthesis of a new group of hybrid phosphonodehydropeptides composed of glycyl-(Z)-dehydrophenylalanine and structurally variable aminophosphonates alongside with investigations of their activity towards cathepsin C are presented. Obtained results suggest that the introduction of (Z)-dehydrophenylalanine residue into the short phosphonopeptide chain does induce the ordered conformation. Investigated peptides appeared to act as weak or moderate inhibitors of cathepsin C.
View Article and Find Full Text PDFThere is a strong need to search for more effective compounds with bone anti-resorptive properties, which will cause fewer complications than commonly used bisphosphonates. To achieve this goal, it is necessary to search for new techniques to characterize the interactions between bone and drug. By studying their interaction with hydroxyapatite (HA), this study used three forms of ceramic materials, two of which are bone-stimulating materials, to assess the suitability of new active substances with anti-resorptive properties.
View Article and Find Full Text PDFA one-pot, regioselective 1,3-dipolar cycloaddition of in situ generated (diethoxyphosphoryl)difluoromethyl nitrile oxide toward selected alkenes and alkynes is reported. This protocol enables facile access to 3,5-disubstituted isoxazolines and isoxazoles bearing a CF2P(O)(OEt)2 moiety in good to excellent yields, under mild reaction conditions.
View Article and Find Full Text PDFBackground: Dehydropeptides are analogs of peptides containing at least one conjugate double bond between α,β-carbon atoms. Its presence provides unique structural properties and reaction centre for chemical modification. In this study, the series of new class of dipeptides containing -substituted dehydrocysteine with variety of heterocyclic moieties was prepared.
View Article and Find Full Text PDFPeptidyl enzyme inhibitors containing an internal aminomethylphosphinic bond system (P(O)(OH)-CH-NH) can be termed extended transition state analogs by similarity to the corresponding phosphonamidates (P(O)(OH)-NH). Phosphonamidate pseudopeptides are broadly recognized as competitive mechanism-based inhibitors of metalloenzymes, mainly hydrolases. Their practical use is, however, limited by hydrolytic instability, which is particularly restricting for dipeptide analogs.
View Article and Find Full Text PDFA library of novel phosphonic acid analogues of homophenylalanine and phenylalanine, containing fluorine and bromine atoms in the phenyl ring, have been synthesized. Their inhibitory properties against two important alanine aminopeptidases, of human (hAPN, CD13) and porcine (pAPN) origin, were evaluated. Enzymatic studies and comparison with literature data indicated the higher inhibitory potential of the homophenylalanine over phenylalanine derivatives towards both enzymes.
View Article and Find Full Text PDFPhosphonopeptides are mimetics of peptides in which phosphonic acid or related (phosphinic, phosphonous ) group replaces either carboxylic acid group present at C-terminus, is located in the peptidyl side chain, or phosphonamidate or phosphinic acid mimics peptide bond. Acting as inhibitors of key enzymes related to variable pathological states they display interesting and useful physiologic activities with potential applications in medicine and agriculture. Since the synthesis and biological properties of peptides containing C-terminal diaryl phosphonates and those with phosphonic fragment replacing peptide bond were comprehensively reviewed, this review concentrate on peptides holding free, unsubstituted phosphonic acid moiety.
View Article and Find Full Text PDFAminophosphonates are an important group of building blocks in medicinal and pharmaceutical chemistry. Novel representatives of this class of compounds containing nontypical side chains are still needed. The aza-Michael-type addition of amines to phosphonodehydroalanine derivatives provides a simple and effective approach for synthesizing '-substituted α,β-diaminoethylphosphonates and thus affords general access to aminophosphonates bearing structurally diverse side chains.
View Article and Find Full Text PDFThe hydrogenation of -substituted vinylphosphonates using rhodium complexes derived from P-OP ligands , -, or as catalysts has been successfully accomplished, achieving very high levels of stereoselectivity (up to 99% ee or de). The described synthetic strategy allowed for the efficient preparation of α-aminophosphonic acid derivatives and phosphonopeptides, which are valuable building blocks for the preparation of biologically relevant molecules.
View Article and Find Full Text PDFA library of phosphonic acid analogs of phenylalanine substituted with fluorine, chlorine and trifluoromethyl moieties on the aromatic ring was synthesized and evaluated for inhibitory activity against human (hAPN) and porcine (pAPN) aminopeptidases. Fluorogenic screening indicated that these analogs are micromolar or submicromolar inhibitors, both enzymes being more active against hAPN. In order to better understand the mode of the action of the most active compounds, molecular modeling was used.
View Article and Find Full Text PDFA three-component reaction between diamines (diaminobenzenes, diaminocyclohexanes, and piperazines), triethyl orthoformate, and diethyl phosphite was studied in some detail. In the case of 1,3- and 1,4-diamines and piperazines, products of the substitution of two amino moieties-the corresponding tetraphosphonic acids-were obtained. In the cases of 1,2-diaminobenzene, 1,2-diaminocyclohexanes and 1,2-diaminocyclohexenes, only one amino group reacted.
View Article and Find Full Text PDFMethods Mol Biol
January 2021
Peptide analogs modified with a phosphorus-based moiety (phosphonate, phosphonamidate, or phosphinate) have emerged as invaluable tools in fundamental and medicinal, mechanistic, and inhibitory studies of proteolytic enzymes and other catalytic proteins that process the amino acids and peptides. The first stages of the chemical synthesis of these compounds frequently involve formation of peptide or pseudopeptide bond between a suitably protected α-amino acid and an α-aminoalkyl phosphorus derivative. These preparative protocols are distinct from conventional solution and solid-phase peptide syntheses that have become routine and automatized.
View Article and Find Full Text PDFThe inhibitory activity of 14 racemic phosphonic acid analogs of phenylglycine, substituted in aromatic rings, towards porcine aminopeptidase N (pAPN) and barley seed aminopeptidase was determined experimentally. The obtained patterns of the inhibitory activity against the two enzymes were similar. The obtained data served as a basis for studying the binding modes of these inhibitors by pAPN using molecular modeling.
View Article and Find Full Text PDFThe reaction of the title lactams with triethyl phosphite prompted by phosphoryl chloride provided six-membered ring heterocyclic phosphonates or bisphosphonates. These novel scaffolds might be of interest as building blocks in medicinal chemistry. The course of the reaction was dependent on the structure of the used substrate.
View Article and Find Full Text PDFHoney is a natural product with a complex chemical composition consisting of sugars and other bioactive compounds. It is important in many traditional systems of medicine, exhibiting interesting bioactivities, in particular antimicrobial, anti-inflammatory and antioxidant effects. Authentication of botanical origin of honeys is particularly important in this context.
View Article and Find Full Text PDFUrease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response.
View Article and Find Full Text PDFBee honey possess various nutritional and medicinal functions, which are the result of its diverse chemical composition. The numerous bioactive compounds in honey come from flower nectar; thus, the identification of the specific chemical profiles of honey samples is of great importance. The lipophilic compounds from eight monofloral honeys (rape, buckwheat, clover, willow, milk thistle, dandelion, raspberry and sweet yellow clover) were investigated.
View Article and Find Full Text PDFA series of phosphonic acid analogues of phenylglycine variously substituted in phenyl ring have been synthesized and evaluated for their inhibitory activity towards potato l-phenylalanine ammonia lyase. Most of the compounds appeared to act as moderate (micromolar) inhibitors of the enzyme. Analysis of their binding performed using molecular modeling have shown that they might be bound either in active site of the enzyme or in the non-physiologic site.
View Article and Find Full Text PDFAddition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C.
View Article and Find Full Text PDFThe reaction between benzyl amines, triethyl orthoformate, and diethyl phosphite affords either bisphosphonic (compound ) or -benzylaminobenzylphosphonic (compound ) acid depending on the reaction conditions. The final output of the reaction can be manipulated by the choice of reaction conditions, particularly the molar ratio of substrates.
View Article and Find Full Text PDF