Am J Respir Crit Care Med
February 2024
The global burden of sepsis is greatest in low-resource settings. Melioidosis, infection with the gram-negative bacterium , is a frequent cause of fatal sepsis in endemic tropical regions such as Southeast Asia. To investigate whether plasma metabolomics would identify biological pathways specific to melioidosis and yield clinically meaningful biomarkers.
View Article and Find Full Text PDFIntroduction: Melioidosis is an often-fatal tropical infectious disease caused by the Gram-negative bacillus , but few studies have identified promising biomarker candidates to predict outcome.
Methods: In 78 prospectively enrolled patients hospitalized with melioidosis, six candidate protein biomarkers, identified from the literature, were measured in plasma at enrollment. A multi-biomarker model was developed using least absolute shrinkage and selection operator (LASSO) regression, and mortality discrimination was compared to a clinical variable model by receiver operating characteristic curve analysis.
PLoS One
August 2021
Serological assays to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might contribute to confirming the suspected coronavirus disease 2019 (COVID-19) in patients not detected with molecular assays. Human antibodies that target the host angiotensin-converting enzyme 2-binding domain of the viral spike protein are a target for serodiagnosis and therapeutics. This study aimed to characterize the classes and subclasses of antibody responses to a recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients and investigated the reactivity of these antibodies in patients with other tropical infections and healthy individuals in Thailand.
View Article and Find Full Text PDFMelioidosis is an often lethal tropical disease caused by the Gram-negative bacillus, . The study objective was to characterize transcriptomes in melioidosis patients and identify genes associated with outcome. Whole blood RNA-seq was performed in a discovery set of 29 melioidosis patients and 3 healthy controls.
View Article and Find Full Text PDFObjectives: To characterize plasma cytokine responses in melioidosis and analyse their association with mortality.
Methods: A prospective longitudinal study was conducted in two hospitals in Northeast Thailand to enrol 161 individuals with melioidosis, plus 13 uninfected healthy individuals and 11 uninfected individuals with diabetes to act as controls. Blood was obtained from all individuals at enrolment (day 0), and at days 5, 12 and 28 from surviving melioidosis patients.
Melioidosis and glanders, respectively caused by the Gram-negative bacteria Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), are considered as urgent public health issues in developing countries and potential bioterrorism agents. Bp and Bm lipopolysaccharides (LPS) have been identified as attractive vaccine candidates for the development of prophylactic measures against melioidosis and glanders. Bp and Bm express structurally similar LPSs wherein the O-antigen (OAg) portion consists of a heteropolymer whose repeating unit is a disaccharide composed of d-glucose and 6-deoxy-l-talose residues, the latter being diversely acetylated and methylated.
View Article and Find Full Text PDFMol Cell Biochem
February 2019
Secretory products from infiltrating macrophages have been thought to play crucial roles in development and progression of diabetic complications in various tissues/organs. Nevertheless, diabetes-induced changes in macrophage secretory products remained largely unknown. We thus analyzed high-glucose (HG)-induced changes in secretome of human macrophages derived from U937 human monocytic cell line after phorbol 12-myristate 13-acetate (PMA) activation.
View Article and Find Full Text PDFBackground: Pruritic Papular Eruption (PPE) is a skin disorders found in HIV infected patients. However, the exact etiology of PPE is not documented. It has been suggested that PPE might result from arthropod bites.
View Article and Find Full Text PDFCTLA-4 is a crucial immune regulator that mediates both negative costimulation signals to T cells, and regulatory T (Treg)-cell extrinsic control of effector responses. Here we present evidence supporting a novel mechanism for this extrinsic suppression, executed by the alternatively spliced soluble CTLA-4 isoform (sCTLA-4). Analyses of human T cells in vitro show that sCTLA-4 secretion can be increased during responses, and has potent inhibitory properties, since isoform-specific blockade of its activity significantly increased Ag-driven proliferation and cytokine (IFN-γ, IL-17) secretion.
View Article and Find Full Text PDF