Publications by authors named "Kaempfer R"

The inflammatory cytokine response is essential for protective immunity, yet bacterial and viral pathogens often elicit an exaggerated response ("cytokine storm") harmful to the host that can cause multi-organ damage and lethality. Much has been published recently on the cytokine storm within the context of the coronavirus pandemic, yet bacterial sepsis, severe wound infections and toxic shock provide other prominent examples. The problem of the cytokine storm is compounded by the increasing incidence of multidrug-resistant bacterial strains.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the complexities of cardiovascular control through the autonomic system is challenging, as shown by the ongoing debates around conditions like orthostatic intolerance.
  • This study created a mathematical model to simulate the sympathetic control of the cardiovascular system, testing young women with varying responses to a head-up-tilt test and measuring their heart rate and blood pressure.
  • The model successfully predicted blood pressure and flow dynamics, identifying seven key parameters that could serve as biomarkers for patient classification, highlighting the potential of computational methods in studying autonomic system pathologies.
View Article and Find Full Text PDF

Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, () mRNA activates PKR through a 5'-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. () pre-mRNA encodes within the 3'-untranslated region (3'-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression.

View Article and Find Full Text PDF

Background: The inflammatory response is indispensable for protective immunity, yet microbial pathogens often trigger an excessive response, 'cytokine storm', harmful to the host. Full T-cell activation requires interaction of costimulatory receptors B7-1(CD80) and B7-2(CD86) expressed on antigen-presenting cells with CD28 expressed on the T cells. We created short peptide mimetics of the homodimer interfaces of the B7 and CD28 receptors and examined their ability to attenuate B7/CD28 coligand engagement and signaling through CD28 for inflammatory cytokine induction in human immune cells, and to protect from lethal toxic shock in vivo.

View Article and Find Full Text PDF

The transient activation of the cellular stress kinase, protein kinase RNA-activated (PKR), by double-helical RNA, especially by viral double-stranded RNA generated during replication, results in the inhibition of translation via the phosphorylation of eukaryotic initiation factor 2 α-chain (eIF2α). Exceptionally, short intragenic elements within primary transcripts of the human tumor necrosis factor () and genes, genes essential for survival, can form RNA structures that strongly activate PKR and thereby render the splicing of their mRNAs highly efficient. These intragenic RNA activators of PKR promote early spliceosome assembly and splicing by inducing phosphorylation of nuclear eIF2α, without impairing the translation of the mature spliced mRNA.

View Article and Find Full Text PDF
Article Synopsis
  • Superantigens like staphylococcal enterotoxins A and B (SEA and SEB) are powerful toxins that can cause toxic shock and sepsis by activating T cells to produce a large amount of inflammatory cytokines.
  • A new AI-based algorithm was used to study how these superantigens interact with the T cell receptors (TCR) and CD28, showing that SEA and SEB can stimulate T cells without relying on antigen presenting cells.
  • The findings suggest that superantigens bind to TCR and CD28 in a unique way, triggering both early and late signaling that results in a significant increase in inflammatory cytokine secretion.
View Article and Find Full Text PDF

Background: Activation of RNA-dependent stress kinase PKR, especially by viral double-stranded RNA, induces eukaryotic initiation factor 2 α-chain (eIF2α) phosphorylation, attenuating thereby translation. We report that this RNA-mediated negative control mechanism, considered a cornerstone of the cell's antiviral response, positively regulates splicing of a viral mRNA.

Results: Excision of the large human immunodeficiency virus (HIV) rev/tat intron depends strictly on activation of PKR by the viral RNA and on eIF2α phosphorylation.

View Article and Find Full Text PDF

The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T-cell activation by binding both T-cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro-inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines.

View Article and Find Full Text PDF

Background: Inflammatory reactions are commonly affected by stress responses. Interleukin-6 signalling is part of the inflammatory response and is stringently regulated by the feedback inhibitor SOCS3 expressed in a short and long isoform. Here, we studied the inhibitory potential of the two SOCS3 isoforms.

View Article and Find Full Text PDF

A critical step in the cellular stress response is transient activation of the RNA-dependent protein kinase PKR by double-helical RNA, resulting in down-regulation of protein synthesis through phosphorylation of the α chain of translation initiation factor eIF2, a major PKR substrate. However, intragenic elements of 100-200 nucleotides in length within primary transcripts of cellular genes, exemplified by the gene and fetal and adult genes, are capable of forming RNA structures that potently activate PKR and thereby strongly enhance mRNA splicing efficiency. By inducing nuclear eIF2α phosphorylation, these PKR activator elements enable highly efficient early spliceosome assembly yet do not impair translation of the mature spliced mRNA.

View Article and Find Full Text PDF

Staphylococcal and streptococcal superantigens are virulence factors that cause toxic shock by hyperinducing inflammatory cytokines. Effective T-cell activation requires interaction between the principal costimulatory receptor CD28 and its two coligands, B7-1 (CD80) and B7-2 (CD86). To elicit an inflammatory cytokine storm, bacterial superantigens must bind directly into the homodimer interfaces of CD28 and B7-2.

View Article and Find Full Text PDF

During severe bacterial infections, death and disease are often caused by an overly strong immune response of the human host. Acute toxic shock is induced by superantigen toxins, a diverse set of proteins secreted by Gram-positive staphylococcal and streptococcal bacterial strains that overstimulate the inflammatory response by orders of magnitude. The need to protect from superantigen toxins led to our discovery that in addition to the well-known MHC class II and T cell receptors, the principal costimulatory receptor, CD28, and its constitutively expressed coligand, B7-2 (CD86), previously thought to have only costimulatory function, are actually critical superantigen receptors.

View Article and Find Full Text PDF

Once activated by double-helical RNA, mammalian RNA-dependent stress protein kinase, PKR, phosphorylates its substrate, translation initiation factor eIF2α, to inhibit translation. eIF2α phosphorylation is critical for mounting a cellular stress response. We describe short, 100-200 nucleotide elements within cellular genes that, once transcribed, form RNA structures that potently activate PKR in the vicinity of the RNA and thereby tightly regulate gene expression in cis.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNF-α) is expressed promptly during inflammatory responses. Efficient TNF-α mRNA splicing is achieved through a 3' UTR element that activates RNA-dependent eIF2α protein kinase (PKR). The TNF-α RNA activator, we show, folds into a pseudoknot conserved from teleost fish to humans, critical for PKR activation and mRNA splicing.

View Article and Find Full Text PDF

Short elements in mammalian mRNA can control gene expression by activating the RNA-dependent protein kinase PKR that attenuates translation by phosphorylating cytoplasmic eukaryotic initiation factor 2α (eIF2α). We demonstrate a novel, positive role for PKR activation and eIF2α phosphorylation in human globin mRNA splicing. PKR localizes in splicing complexes and associates with splicing factor SC35.

View Article and Find Full Text PDF

Formation of the costimulatory axis between the B7-2 and CD28 coreceptors is critical for T-cell activation. Superantigens, Gram-positive bacterial virulence factors, cause toxic shock and sepsis by hyperinducing inflammatory cytokines. We report a novel role for costimulatory receptors CD28 and B7-2 as obligatory receptors for superantigens, rendering them therapeutic targets.

View Article and Find Full Text PDF

Full T-cell activation requires interaction between the costimulatory receptors B7-2 and CD28. By binding CD28, bacterial superantigens elicit harmful inflammatory cytokine overexpression through an unknown mechanism. We show that, by engaging not only CD28 but also its coligand B7-2 directly, superantigens potently enhance the avidity between B7-2 and CD28, inducing thereby T-cell hyperactivation.

View Article and Find Full Text PDF

Background: Severe gram-negative bacterial infections and sepsis are major causes of morbidity and mortality. Dysregulated, excessive proinflammatory cytokine expression contributes to the pathogenesis of sepsis. A CD28 mimetic peptide (AB103; previously known as p2TA) that attenuates CD28 signaling and T-helper type 1 cytokine responses was tested for its ability to increase survival in models of polymicrobial infection and gram-negative sepsis.

View Article and Find Full Text PDF

The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103) that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C), Peptide (P; 5 mg/kg of p2TA peptide), Radiation (R; total body irradiation with 8 Gy γ-rays), and Radiation + Peptide (RP; irradiation followed by p2TA peptide 24 h later). Gastrointestinal tissue damage was evaluated by analysis of jejunum histopathology and immunohistochemistry for cell proliferation (Cyclin D1) and inflammation (COX-2) markers, as well as the presence of macrophages (F4/80).

View Article and Find Full Text PDF

Importance: Necrotizing soft-tissue infections (NSTI) have high morbidity and mortality rates despite aggressive surgical debridement and antibiotic therapy. AB103 is a peptide mimetic of the T-lymphocyte receptor, CD28. We hypothesized that AB103 will limit inflammatory responses to bacterial toxins and decrease the incidence of organ failure.

View Article and Find Full Text PDF

Every adaptive immune response requires costimulation through the B7/CD28 axis, with CD28 on T-cells functioning as principal costimulatory receptor. Staphylococcal and streptococcal superantigen toxins hyperstimulate the T-cell-mediated immune response by orders of magnitude, inducing a lethal cytokine storm. We show that to elicit an inflammatory cytokine storm and lethality, superantigens must bind directly to CD28.

View Article and Find Full Text PDF